Hostname: page-component-8448b6f56d-m8qmq Total loading time: 0 Render date: 2024-04-19T01:36:44.124Z Has data issue: false hasContentIssue false

Amorphous Magnetoelastic Materials

Published online by Cambridge University Press:  16 February 2011

H. T. Savage
Affiliation:
BCS Inc., 1003g Sunnyvale Lane, Madison, WI 53713
Marilyn Wun-Fogle
Affiliation:
NSWC, Carderock, Code 684, Silver Spring, MD 20903-5000
Get access

Abstract

The outstanding feature of amorphous magnetoelastic alloys is the controllability of the magnetic anisotropy energy, Curie point, magnetostriction and magnetic moment. This control of material characteristics, achieved by magnetic and stress annealing plus changes incomposition, is impossible in crystalline materials. The control allows the design of tactile and magnetic field sensors with special features and very high sensitivity. The materials discussed are prepared by rapid solidification through melt spinning in ribbon and wire geometries and magnetron sputtering onto substrates. As an example of the advantagesof sputtered material, an accelerometer on silicon micro-cantilevers is shown. I-t has nocoils. The basic magnetoelastic theory that governs tactile sensors is shown. Low-noise magnetic field sensors with novel twist anisotropies and Barkhausen instabilities in wiresare discussed.

Type
Research Article
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Modzelewski, C., Savage, H. T., Kabakoff, L.T. and Clark, A. E., IEEE Trans. Magn. MAG 17, 2837 (1981).Google Scholar
2.Savage, H. T., Spano, M. L., J. Appl. Phys. 53 (11), 8092(1982).Google Scholar
3.Hernando, A., Vasquez, M. and Barandian, J. M., "Metallic Glasses in Sensing Applications," J. Phys. E 21, 11291139 (1988).Google Scholar
4.Savage, H. T., "The AE effect in magnetoelastic materials Concise Encyclopedia of Magnetic and Superconducting Materials., Ed. Evetts, Jan, Pergamon Press, 266 (1992).Google Scholar
5.Savage, H. T. and Adler, Charles, Effects of magnetostriction in amorphous ferromagnets, Material Science and Engineering, 99, 1318 (1988).Google Scholar
6.Wun-Fogle, M., Savage, H. T., Clark, A. E., Sensors and Actuators 12, 323331 (1987).Google Scholar
7.Nielsen, Otto V., Gutierrez, J., Hernando, B. and Savage, H. T., IEEE Trans. Magnetics, 26, No. 1, 276(1990).Google Scholar
8.Kabacoff, L. T., Savage, H. T., Wun-Fogle, M. and Troetschel, F. Randall, "Thermal, Magnetic Magnetomechanical Properties of Amorphous Magnetron Sputtered Fe 78 B 13 Si 9", IEEE Trans. Magnetics, MAG 22, No. 5, 427 (1986).Google Scholar
9.Wun-Fogle, M., Savage, H. T., Kabacoff, L. T., Spano, M. L., Cullen, J. R., Jones, G. A., and Lord, D. G., IEEE Trans. Magn. 25, 3617 (1989).Google Scholar
10.Malmhall, R., Mohri, K., Humphrey, F. B., Manabe, T., Kawamura, H., Yamasaki, J., and Ogasawara, I., IEEE Trans. Magn. MAG-23, 3242 (1987).Google Scholar
11. Dr. Vãzquez, Manuel, private communication.Google Scholar
12.Wun-Fogle, M., Savage, H. T., unpublished.Google Scholar
13.Savage, H. T., Chen, D-X, Gòmez-Polo, C., Vãzquez, M. and Wun-Fogle, M., J. Phys D.:Appl. Phys. 27, 681 (1994).Google Scholar
14.Wallace, John L., J. Appl. Phys., 73 (10), 5360(1993).Google Scholar
15.Savage, H. T., U. S. Patent No. 4,497,046; Long Line Hydrophone.Google Scholar