Skip to main content Accessibility help
×
Home

Amorphous Diamond Films Deposited by Pulsed-Laser Ablation: the Optimum Carbon-Ion Kinetic Energy and Effects of Laser Wavelength

  • Douglas H. Lowndes (a1) (a2), Vladimir I. Merkulov (a1), A. A. Puretzky (a1), D. B. Geohegan (a1), G. E. Jellison (a1), C. M. Rouleau (a1) and T. Thundat (a3)...

Abstract

A systematic study has been made of changes in the bonding and optical properties of hydrogen-free tetrahedral amorphous carbon (ta-C) films, as a function of the kinetic energy of the incident carbon ions measured under film-deposition conditions. Ion probe measurements of the carbon ion kinetic energies produced by ArF and KrF laser ablation of graphite are compared under identical beam-focusing conditions. Much higher C+ kinetic energies are produced by ArF-laser ablation than by KrF for any given fluence and spot size. Electron energy loss spectroscopy and scanning ellipsometry measurements of the sp3 bonding fraction, plasmon energy, and optical properties reveal a well-defined optimum kinetic energy of 90 eV to deposit ta-C films having the largest sp3 fraction and the widest optical (Tauc) energy gap (equivalent to minimum near-gap optical absorption). Tapping-mode atomic force microscope measurements show that films deposited at near-optimum kinetic energy are extremely smooth, with rms roughness of only ~ 1 Å over distances of several hundred nm, and are relatively free of particulates.

Copyright

References

Hide All
1. Robertson, J., Prog. Solid State Chem. 21, 199 (1991).
2. Robertson, J., Surf. Coat. Technol. 50, 185 (1992).
3. McKenzie, D. R. et al. , J. Non-Crystalline Solids 164–166, 1101 (1993).
4. For a more complete summary of previous ta-C film deposition see refs. 8, 9, 11, 12, 35.
5. McKenzie, D. R., Muller, D., and Pailthorpe, B. A., Phys. Rev. Lett. 67, 773 (1991).
6. Lossy, R. et al. , Appl. Phys. Lett. 61, 171 (1992).
7. Fallon, P. J. et al. , Phys. Rev. B 48, 4777 (1993).
8. Xu, S. et al. , J. Appl. Phys. 79, 7234 (1996).
9. Xu, S. et al. , Phil Mag. B 76, 351 (1997).
10. Milne, W. I. et al. , Mat. Res. Soc. Symp. Proc. 471, 231 (1997).
11. Silva, S. R. P. et al. , Thin Solid Films 290–291, 317 (1996).
12. Chhwolla, M. et al. , Phys. Rev. B 52, 15812 (1995).
14. Prawer, S. et al. , Diamond Relat. Mater. 5, 433 (1996).
15. Lifshitz, Y., Diamond Relat. Mater. 5, 388 (1996).
16. Marquardt, C. L., Williams, R. T., and Nagel, D. J., Mat. Res. Soc. Symp. Proc. 38, 325 (1985).
17. Pappas, D. L. et al. , J. Appl. Phys. 71, 5675 (1992).
18. Pappas, D. L. et al. , J. Appl. Phys. 72, 3966 (1992).
19. Xiong, F., Wang, Y. Y., Leppert, V., and Chang, R. P. H., I. Mater. Res. 8, 2265 (1993).
20. Xiong, F., Wang, Y. Y., and Chang, R. P. H., Phys. Rev. B 48, 8016 (1993).
21. Puretzky, A. A. et al. , Mat. Res. Soc. Symp. Proc. 388, 145 (1995).
22. Puretzky, A. A. et al. , Appl. Surf. Sci. 96–98, 859 (1996).
23. Geohegan, D. B. and Puretzky, A. A., Mat. Res. Soc. Symp. Proc. 397, 55 (1996).
24. Lowndes, D. H. et al. , Science 273, 898 (1996).
25. Yamamoto, K. et al. , Jpn. J. Appl. Phys. Lett. 36, L1333 (1997).
26. Sato, T. et al. , Jpn. J. Appl. Phys. Lett. 26, L1487 (1987).
27. Koster, H. and Mann, K., Appl. Surf. Sci. 109–110, 428 (1997).
28. Murray, P. T. and Thebert-Peeler, D., p. 359 in Second Inter. Conf. on Laser Ablation: Mechanisms and Applications II, Amer. Inst. of Physics, New York, 1993.
29. Sullivan, J. P., Friedmann, T. A., and Baca, A. G., J. Electron. Materials 26, 1021 (1997).
30. Friedmann, T. A. et al. , Appl. Phys. Lett. 71, 3820 (1997).
31. Siegal, M. P. et al. , Mat. Res. Soc. Symp. Proc. 349, 507 (1994).
32. Robertson, J., Diamond Relat. Mater. 2, 984 (1993).
33. Robertson, J., Phil. Trans. Royal Soc. London, Ser. A 342, 277 (1993).
34. Merkulov, V. I. et al. , submitted to Applied Physics Letters.
35. Lowndes, D. H. et al. , submitted to J. of Applied Physics.
36. Geohegan, D. B., p. 124127 and p. 147–8 in Pulsed Laser Deposition of Thin Films (ed. by Chrisey, D. B. and Hubler, G. K.), John Wiley & Sons, New York, 1994.
37. Berger, S. D. and McKenzie, D. R., Phil. Mag. Lett. 57, 285 (1988).
38. Jellison, G. E. Jr., and Modine, F. A., Appl. Opt. 36, 8184 (1997);
Jellison, G. E. Jr., and Modine, F. A., Appl. Opt. 36, 8190 (1997).
39. Jellison, G. E. Jr., Geohegan, D. B., Lowndes, D. H., Puretzky, A. A., and Merkulov, V., this symposium proceedings.
40. Jellison, G. E. Jr., and Modine, F. A., Appl. Phys. Lett. 69, 373–373 (1996);
Jellison, G. E. Jr., and Modine, F. A., Appl. Phys. Lett. 69, 2137 (1996).

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed