Skip to main content Accessibility help
×
Home

Aluminum Nitride fibers from a Thermoplastic Organoaluminum Precursor

  • John D. Bolt (a1) and Fred N. Tebbe (a1)

Abstract

A new organoaluminum polymer (EtAINH)n(Et2AlNH2)m·AlEt3 derived from triethylaluminum and ammonia, is thermoplastic at elevated temperatures and a glassy solid at ambient temperature. As a thermoplastic it can be processed in certain shapes, solidified, cured and transformed to dense aluminum nitride with retention of its shape. Aluminum nitride fibers are prepared by melt spinning the polymer, pyrolyzing in ammonia and at high temperature in nitrogen. The AlN microstructure forms as very fine particles at 400–600°C, coarsens at higher temperature, and densifies at 1600–1800 °C into polycrystalline AlN with submicron grains. Mechanical strength, thermal expansion and dielectric constant are consistent with bulk ceramic values. Initial thermal conductivity deduced from composite measurements is 82 W/m°K in fibers containing 0.5 to 1.0 percent oxygen.

Copyright

References

Hide All
1.Slack, G. A., Tanzilla, R. A., Pohl, R. O., and Vandersande, J. W., J. Phys. Chem. Solids, 48, 641 (1987).
2.Button, D. P., Yost, B. A., French, R. H., Hsu, W. Y., Bolt, J. D., Subramanian, M. A., Zhang, H.-M., Geidd, R. E., Whitaker, A. J., and Onn, D. G., submitted to Advances in Ceramics, edited by O'Bryan, H. M., Niwa, K., Young, W., and Yan, M. F..
3.Tebbe, F. N., U.S. Patent No. 4 696 968 (October, 1987).
4.Tebbe, F. N., Bolt, J. D., Young, R. J., Van Buskirk, O. R., Mahler, W., Reddy, G. S., and Chowdhry, U., submitted to Advances in Ceramics, edited by O'Bryan, H. M., Niwa, K., Young, W., and Yan, M. F..
5.Bolt, J. D. and Tebbe, F. N., submitted to Advances in Ceramics, edited by O'Bryan, H. M., Niwa, K., Young, W., and Yan, M. F..
6.Wiberg, E., reported in Bahr, G., FIAT Review of German Science, 24, Inorganic Chemistry, Pt.2, Klemm, W., ed. (1948), p. 55.
7.Interrante, L. V., Carpenter, L. E., II Whitmarsh, C., Lee, W., Garbauskas, M., and Slack, G. A. in Better Ceramics Through Chemistry 2, edited by Brinker, C. J., Clark, D. E., and Ulrich, D. R. (Mater. Res. Soc. Proc. 73, Palo Alto, CA, 1986) pp. 359.
8.Rensch, U. and Eichorn, G., Phys. Stat. Sol. (a) 77, 195 (1983).
9.Morita, M., Uesugi, N., Isogai, S., Tsubouchi, K., and Mikoshiba, N., Jap. J. Appl. Phys., 20, 17 (1981).
10.Manasevit, H. M., Erdmann, F. M., and Simpson, W. I., J. Electrochem. Soc., 118, 1864 (1971).
11.Maeda, N. and Harada, H, Japanese pat. Application public. Tokuko 54–13 439 (1979).
12.Taylor, K. M. and Lenie, C., J. Electrochem. Soc., 107, 308 (1960).
13.Billy, M. and Mexmain, J., Sprechsaal, 118, 245 (1985).
14.Gitzen, W. H., Alumina as a Ceramic Material (Am. Ceram. Soc., Columbus, Ohio, 1970) p. 7884.

Related content

Powered by UNSILO

Aluminum Nitride fibers from a Thermoplastic Organoaluminum Precursor

  • John D. Bolt (a1) and Fred N. Tebbe (a1)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.