Hostname: page-component-76fb5796d-22dnz Total loading time: 0 Render date: 2024-04-25T15:20:36.729Z Has data issue: false hasContentIssue false

All-organic single-transistor permanent memory device

Published online by Cambridge University Press:  01 February 2011

Raoul Schroeder
Affiliation:
Department of Physics and Astronomy, University of Sheffield, Hounsfield Road Sheffield, S3 7RH, UK Email: M.Grell@sheffield.ac.uk
Leszek A. Majewski
Affiliation:
Department of Physics and Astronomy, University of Sheffield, Hounsfield Road Sheffield, S3 7RH, UK Email: M.Grell@sheffield.ac.uk
Monika Voigt
Affiliation:
Department of Physics and Astronomy, University of Sheffield, Hounsfield Road Sheffield, S3 7RH, UK Email: M.Grell@sheffield.ac.uk
Martin Grell
Affiliation:
Department of Physics and Astronomy, University of Sheffield, Hounsfield Road Sheffield, S3 7RH, UK Email: M.Grell@sheffield.ac.uk
Get access

Abstract

We present an all-organic permanent memory transistor using an amorphous spin-cast gate insulator. This gate insulator exhibits a remanent polarisation in its amorphous state, a unique property, which is best described as “ferroelectric-like”. The memory transistor thus built perform extremely well, even when compared to inorganic ferroelectric memory transistors; the memory “on” to memory “off” current ratio is close to 3×10-a4, while time-dependent studies show retention times of 14 hours and more.

Type
Research Article
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Grem, G., Leditzky, G., Ullrich, B., and Leising, G., Adv. Mater. 4, 36 (1992).Google Scholar
[2] Tessler, N., Harrison, N. T., and Friend, R. H., Adv. Mater. 10, 64 (1998).Google Scholar
[3] Li, Y. Q., Fung, M. K., Xie, Z. Y., Lee, S. T., Hung, L. S., and Shi, J. M., Adv. Mater. 14, 1317 (2002).Google Scholar
[4] Goh, J. C., Chung, H. J., Jang, J., and Han, Ch.A., IEEE Electron Dev. Lett. 23, 544 (2002).Google Scholar
[5] Katz, H. E., Hong, X. M., Dodabalapur, A., and Sarpeshkar, R. J., J. Appl. Phys. 91, 1572 (2002).Google Scholar
[6] Mushrush, M., Facchetti, A., Lefenfeld, M., Katz, H. E., and Marks, T. J., J. Am. Chem. Soc. 125, 9414 (2003).Google Scholar
[7] Schroeder, R., Majewski, L. A., and Grell, M., Adv. Mater. 16, 634 (2004).Google Scholar
[8] Schroeder, R., Majewski, L. A., Voigt, M. and Grell, M., IEEE Electron Dev. Lett. (in print).Google Scholar
[9] Murata, Y., Tsunashima, L., Koizumi, N., Ogami, K., Hosokawa, F., and Yokoyama, K., Jpn. J. Appl. Phys. 32, L849 (1993).Google Scholar
[10] Murata, Y., Tsunashima, K., Koizumi, N., Jpn. J. Appl. Phys. 34, 6458 (1995).Google Scholar
[11] Xiong, S., Sakai, S., Ishii, K., Migita, S., Sakamaki, K., Ota, H., and Suzuki, E., J. Appl. Phys. 94, 2559 (2003).Google Scholar
[12] Li, T., Hsu, S. T., Ulrich, B. D., and Evans, D. R., IEEE T. Electron Dev. 50, 2280 (2003).Google Scholar
[13] e.g.: Koo, S.-M., Khartsev, S., Zetterling, C.-M., Grishin, A., and Östling, M., Appl. Phys. Lett. 83, 3975 (2003).Google Scholar
[14] Velu, G., Legrand, C., Tharaud, O., Chapoton, A., Remiens, D., and Horowitz, G., Appl. Phys. Lett. 79, 659 (2001).Google Scholar
[15] Matsuo, Y., Ijichi, T., Hatori, J., Ikehata, S., Curr. Appl. Phys. 4, 210 (2004).Google Scholar
[16] Unni, K. N. N., de Bettignies, R., Dabos-Seignon, S., and Nunzi, J.-M., Appl. Phys. Lett. 85, 1823 (2004).Google Scholar
[17] e.g.: Sakai, S. and Ilangovan, R., IEEE Electron Dev. Lett. 25, 369 (2004).Google Scholar