Skip to main content Accessibility help

Aligned-Crystalline Si Films on Non-Single-Crystalline Substrates

  • Alp Findikoglu (a1), Terry G. Holesinger (a2), Alyson Niemeyer (a3), Vladimir Matias (a4) and Ozan Ugurlu (a5)...


We summarize recent progress in growth and characterization of aligned-crystalline silicon (ACSi) films on polycrystalline metal and amorphous glass substrates. The ACSi deposition process uses, as a key technique, ion-beam-assisted deposition (IBAD) texturing on a non-single-crystalline substrate to achieve a biaxially-oriented (i.e., with preferred out-of-plane and in-plane crystallographic orientations) IBAD seed layer, upon which homo- and hetero-epitaxial buffer layers and hetero-epitaxial silicon (i.e., ACSi) films with good electronic properties can be grown. We have demonstrated the versatility of our approach by preparing ACSi films on customized architectures, including fully insulating and transparent IBAD layer and buffer layers based on oxides on glass and flexible metal tape, and conducting and reflective IBAD layer and buffer layers based on nitrides on flexible metal tape. Optimized 0.4-μm-thick ACSi films demonstrate out-of-plane and in-plane mosaic spreads of 0.8° and 1.3°, respectively, and a room-temperature Hall mobility of ∼90 cm2/V.s (∼50% of what is achievable with epitaxial single-crystalline Si films, and ∼1000 times that of amorphous Si films) for a p-type doping concentration of ∼4×1016 cm−3. By using various experimental techniques, we have confirmed the underlying crystalline order and the superior electrical characteristics of low-angle (<5°) grain boundaries in ACSi films. Forming gas anneal experiments indicate that Si films with low-angle grain boundaries do not need to be passivated to demonstrate improved majority carrier transport properties. Measurements on metal-insulator-semiconductor structures using ACSi films yield near-electronic-grade surface properties and low surface defect densities in the ACSi films. A prototype n+/p/p+–type diode fabricated using a 4.2-μm-thick ACSi film shows minority carrier lifetime of ∼3 μs, an estimated diffusion length of ∼30 μm in the p-Si layer with a doping concentration of 5×1016 cm−3, and external quantum efficiency of ∼80% at 450 nm with the addition of an MgO film anti-reflector.



Hide All
1. Arendit, P.N, Foltyn, S.R., Mater.Res. Soc.Bull. 29, 543 (2004).
2. Lijima, Y., Kakimoto, K., sutoh, Y., Ajimura, S., Saitoh, T. Supercond.Sci Tech. 17, 264
3. Wang, C. P., Do, K. B., Beasley, M. R., Geballe, T. H., Hammond, R. H., Appl. Phys. Lett. 71, 2955 (1997)
4. Findikoglu, A. T., Kreiskott, S., te Riele, P. M., and Matias, V., J. Mater. Res. 19, 501 (2004).
5. Dong, L., Srolovitz, D. J., Was, G. S., Zhao, Q., and Rollett, A. D., J. Mater. Res. 16, 210 (2001).
6. Dong, L., Zepeta-Ruiz, L. A., Srolovitz, D. J., J. Appl. Phys. 89, 4105 (2001).
7. Findikoglu, A. T., Choi, W., Matias, V., Holesinger, T. G., Jia, Q. X., Peterson, D. E., Adv.Mater. 17, 1527 (2005).
8. Choi, W., Lee, J. K., Findikoglu, A. T., Appl. Phys. Lett. 89, 262111 (2006).
9. Choi, W., Findikoglu, A. T., Romero, M. J., Al-Jassim, M., JMR 22, 821 (2007).
10. Findikoglu, A. T., Choi, W., Hawley, M., Romero, M. J., Jones, K. M., Al-Jassim, M. M., in Progress in Advanced Materials Research (Ed: Voler, N. H., Nova Science Publishers, Hauppauge, New York, 2007), Ch. 6.
11. Findikoglu, A. T., Ugurlu, O., and holesinger, T. G., Mater.Res. Soc. Symp. Proc. 1066 (in press).
12. Yamamoto, K., IEEE Trans. Electron Dev. 46, 2041 (1999).
13. Aberle, A. G., Widenborg, P. I., Song, D., Straub, A., Terry, M. L., Walsh, T., Sproul, A., Campbell, P., Inns, D., Beilby, B., Griffin, M., Weber, J., Huang, Y., Kunz, O., Gebs, R., Martin-Brune, F., Barroux, V., Wenham, S. H., “Recent Advances in Polycrystalline Silicon Thin-Film Solar Cells on Glass at UNSW”, presented at Thirty-First IEEE Photovoltaic Specialists Conference (Lake Buena Vista, FL, USA, 2005).
14. Werner, J. H., Dassow, R., Rinke, T. J., Kohler, J. R., Bergmann, R. B., Thin Sol. Films 383, 95 (2001)
15. Teplin, C. W., Ginley, D. S., Branz, H. M., J.Non-Cryst.Solids 352, 984 (2006).
16. Lin, J. F., Li, S. S., Linares, L. C., Teng, K. W., Solid State Electron. 24, 827 (1981).
17. Sze, S. M., Physics of Semiconductor Devices (Wiley-Interscience, New York, 1981).
18. Toshiharu, S., J. Appl. Phys. 99, 11 (2006).
19. Haji, L., Joubert, P., Stoemenos, J., Economou, N. A., J. Appl. Phys. 75, 3944 (1994).
20. Bergmann, R. B., Kohler, J., Dassow, R., Zaczek, C., Werner, J. H., Physica Status Solidi A166, 587 (1998)
21. Im, J. S., Sposili, R. S., Crowder, M. A., Appl. Phys. Lett. 70, 3434 (1997).
22. Tai, M., Hatano, M., Yamaguchi, S., Noda, T., Park, S. K., Shiba, T., Ohkura, M., IEEE Trans Electron. Devices 51, 934 (2004).



Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed