Skip to main content Accessibility help

AlGaN Channel HEMT with Extremely High Breakdown Voltage

  • Takuma Nanjo (a1), Misaichi Takeuchi (a2), Akifumi Imai (a1), Yousuke Suzuki (a1), Muneyoshi Suita (a1), Katsuomi Shiozawa (a1), Yuji Abe (a1), Eiji Yagyu (a1), Kiichi Yoshiara (a1) and Yoshinobu Aoyagi (a2)...


A channel layer substitution of a wider bandgap AlGaN for a conventional GaN in high electron mobility transistors (HEMTs) is an effective method of enhancing the breakdown voltage. Wider bandgap AlGaN, however, should also increase the ohmic contact resistance. Si ion implantation doping technique was utilized to achieve sufficiently low resistive source/drain contacts. The fabricated AlGaN channel HEMTs with the field plate structure demonstrated good pinch-off operation with sufficiently high drain current density of 0.5 A/mm without noticeable current collapse. The obtained maximum breakdown voltages was 1700 V in the AlGaN channel HEMT with the gate-drain distance of 10 μm. These remarkable results indicate that AlGaN channel HEMTs could become future strong candidates for not only high-frequency devices such as low noise amplifiers but also high-power devices such as switching applications.



Hide All
1. Keller, S., Wu, Y-F., Parish, G., Ziang, N., Xu, J. J., Keller, B. P., DenBaars, S. P. and Mishra, U. K., IEEE Trans.Electron Devices 48, 552 (2001).
2. Kikkawa, T., Jpn. J. Appl. Phys., Part 1 44, 4896 (2005).
3. Hikita, M., Yanagihara, M., Nakazawa, K., Ueno, H., Hirose, Y., Ueda, T., Uemoto, Y., Tanaka, T., Ueda, D. and Egawa, T., IEEE Trans.Electron Devices 52, 1963 (2005)
4. Dora, Y., Chakraborty, A., McCarthy, L., Keller, S., DenBaars, S. P. and Mishra, U. K., IEEE Electron Device Lett. 27, 713 (2006)
5. Tipirneni, N.. Koudymov, A., Adivarahan, V., Yang, J., Simin, G. and Khan, M. A., IEEE Electron Device Lett. 27, 716 (2006)
6. Suh, C. S., Dora, Y., Fichtenbaum, N., McCarthy, L., Keller, S., and Mishra, U. K., Tech. Dig. - Int. Electron Devices Meet. (2006).
7. Choi, Y. C., Shi, J., Pophristic, M., Spencer, M. G. and Eastman, L. F., J. Vac. Sci. Technol. B 25, 1836 (2007)
8. Uemoto, Y., Shibata, D., Yanagihara, M., Ishida, H., Matsuo, H., Nagai, S., Batta, N., Li, M., Ueda, T., Tanaka, T., and Ueda, D., Tech. Dig. - Int. Electron Devices Meet. (2007).
9. Morita, T., Yanagihara, M., Ishida, H., Hikita, M., Kaibara, K., Matsuo, H., Uemoto, Y., Ueda, T., Tanaka, T. and Ueda, D., Tech. Dig. - Int. Electron Devices Meet. (2007).
10. Ikeda, N., Niiyama, Y.. Kambayashi, H., Sato, Y., Nomura, T., Kato, S. and Yoshida, S., Proc. IEEE, 98, 1151 (2010)
11. Suita, M., Nanjo, T., Oishi, T., Abe, Y. and Tokuda, Y., Phys. Status Solidi C 3, 2364 (2006)
12. Oishi, T., Miura, N., Suita, M., Nanjo, T., Abe, Y., and Ozeki, T., Ishikawa, H., Egawa, T.andJimbo, T., J. Appl. Phys. 94, 1662 (2003).
13. Kamo, Y., Kunii, T. Takeuchi, H., Yamamoto, Y., Totsuka, M., Shiga, T., Minami, H., Kitano, T., Miyakuni, S., Oku, T., Inoue, A., Nanjo, T., Tsuyama, Y., Shirahana, R., Iyomasa, K., Yamanaka, K., Ishikawa, T., Takagi, T., Marumoto, K. and Matsuda, Y., 2005 IEEE MTT-S Int. Microwave Symp.Dig. 495 (2005).
14. Higashiwaki, M., Hirose, N. and Matsui, T.: IEEE Electron Device Lett. 26, 139 (2005).
15. Higashiwaki, M., Matsui, T. and Mimura, T.: IEEE Electron Device Lett. 27, 16 (2006).
16. Raman, A., Dasgupta, S., Rajan, S., Speck, J. S. and Mishra, U. K., Jpn. J. Appl. Phys., 47, 3357 (2008)
17. Nanjo, T., Takeuchi, M., Imai, A., Suita, M., Oishi, T., Abe, Y., Yagyu, E., Kurata, T., Tokuda, Y. and Aoyagi, Y., Electron. Lett. 39, 750 (2003).



Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed