Published online by Cambridge University Press: 10 February 2011
The agglomeration of thin (10 nm) Cu films suitable for use as electroplating seed layers has been investigated on ultrathin (<4 nm) Ta, Ta1-xNx, Tal-xOx, and composite Ta/Ta1-xNx, diffusion barriers. Copper films on clean 3.6nm Ta barriers deposited by ultrahigh vacuum sputter deposition at up to 120°C are stable against agglomeration during 30 minute anneals at 360°C and display strong (022) crystallographic texture. Similar Cu films deposited on thinner Ta, Ta0 85N0 15, Ta0.95O0 05, and residual gas contaminated (∼ 1 Langmuir) Ta barriers agglomerate during annealing, and Cu films on Ta0 85N0 15 and contaminated Ta have random biaxial crystallographic texture. The density of agglomerated regions in Cu films on SiO2 and Ta0 85N0 15 is characterized as a function of thickness of an ultrathin Ta adhesion layer.