Hostname: page-component-8448b6f56d-tj2md Total loading time: 0 Render date: 2024-04-16T04:04:58.275Z Has data issue: false hasContentIssue false

Advantages of Modal Dispersion Phase-Matching and Materials Requirements for Polymeric Devices Using Efficient Second Harmonic Generation at Telecommunication Wavelength

Published online by Cambridge University Press:  10 February 2011

Matthias L. Jäger
Affiliation:
Center for Research and Education in Optics and Lasers–CREOL, University of Central Florida - UCF, P.O. Box 162700 - 4000 Central Florida Boulevard Orlando FL 32816-2700 - USA
Vincent Ricci
Affiliation:
Center for Research and Education in Optics and Lasers–CREOL, University of Central Florida - UCF, P.O. Box 162700 - 4000 Central Florida Boulevard Orlando FL 32816-2700 - USA
Wook-Rae Cho
Affiliation:
Center for Research and Education in Optics and Lasers–CREOL, University of Central Florida - UCF, P.O. Box 162700 - 4000 Central Florida Boulevard Orlando FL 32816-2700 - USA
Michael T. G. Canva
Affiliation:
Center for Research and Education in Optics and Lasers–CREOL, University of Central Florida - UCF, P.O. Box 162700 - 4000 Central Florida Boulevard Orlando FL 32816-2700 - USA
George I. Stegeman
Affiliation:
Center for Research and Education in Optics and Lasers–CREOL, University of Central Florida - UCF, P.O. Box 162700 - 4000 Central Florida Boulevard Orlando FL 32816-2700 - USA
Get access

Abstract

Modal Dispersion Phase Matching appears to be currently much better adapted to parametric mixing in polymeric material waveguides than Quasi Phase Matching. For second harmonic generation at telecommunication wavelengths, using organic materials should allow better performance than with ferroelectric crystals. Promising results are expected in view of theoretical expectations and continuously improving experimental past and current results.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Somekh, S. and Yariv, A., “Phase-matchable nonlinear optical interactions in periodic thin films.” Appl. Phys. Lett., 21, 140141. (1972).Google Scholar
2 Suhara, T., Morimoto, T. and Nishihara, H., “Optical second-harmonic generation by quasi-phase-matching in channel waveguide structure using organic molecular crystal.”, IEEE Photon. Technol. Lett., 5, 934937, (1993).Google Scholar
3 Bortz, M., Fujimura, M. and Fejer, M., “Increased acceptance bandwidth for quasi-phase-matched second-harmonic generation in LiNbO3 waveguides”, Electron. Lett., 30, 3435, (1994).Google Scholar
4 Azumai, Y., Kishimoto, M., Seo, I. and Sato, H., “Enhanced SHG power using periodic poling of vinylidene cyanide /vinyl acetate copolymer.”, IEEE J. Quantum Electron., 30, 19241933, (1994).10.1109/3.301656Google Scholar
5 Khanarian, G., Norwood, R., Haas, D., Feuer, B. and Karim, D., “Phase-matched second-harmonic generation in apolymer waveguide.”, Appl. Phys. Left., 57, 977979, (1990).Google Scholar
6 Norwood, R. and Khanarian, G., “Quasi-phase-matched frequency doubling over 5 mm in a periodically poled polymer waveguide ”, Electron. Lett., 26, 21052106, (1990).Google Scholar
7 Rikken, G., Seppen, C., Nijhuis, S. and Meijer, E., “Poled Polymers for frequency doubling of diode lasers. ”, Appl. Phys. Lett., 58, 435437, (1990).Google Scholar
8 Jäger, M., Stegeman, G., Brinker, W., Yilmaz, S., Bauer, S., Horsthuis, W. and Möhlmann, G., “Comparison of quasi-phase-matching geometries for second harmonic generation in poled polymer channel waveguides at 1.5 μm ”, Appl. Phys. Lett., 68, 11831185 (1996).Google Scholar
9 Shuto, Y., Watanabe, T., Tomaru, S., Yokohama, I., Hikita, M. and Amano, M., “Quasi-phase-matched second-harmonic generation in diazo-dye-substituted polymer channel waveguides. ”, IEEE J. of Quantum Electron., 33, 349357, (1997).Google Scholar
10 Flörsheimer, M., Küpfer, M., Bosshard, Ch., Looser, H. and Günter, P., “Phase-matched optical secondharmonic generation in Langmuir-Blodgett film waveguides by mode conversion”, Adv. Mater. Commun., 4, 795798, (1992).Google Scholar
11 Ito, H. and Inaba, H., “Efficient phase-matched second-harmonic generation method in four-layered optical-waveguide structure”, Opt. Lett. 2, 139141, (1978).Google Scholar
12 Otomo, A., Jäger, M., Stegeman, G., Flipse, M. and Diemeer, M., “Key trade-offs for second-harmonic generation in poled polymers”, Appl. Phys. Lett., 69, 19911993 (1996).10.1063/1.116856Google Scholar
13 Jäger, M., Stegeman, G., Möhlmann, G., Flipse, M. and Diemeer, M., “Second harmonic generation in polymeric channel waveguides using modal dispersion”, Electron. Lett., 32, 20092010 (1996).Google Scholar
14 Jäger, M., Stegeman, G., Flipse, M., Diemeer, M. and Möhlmann, G., “Modal dispersion phase matching over 7 mm length in overdamped polymeric channel waveguides”, Appl. Phys. Lett., 69, 4139 (1996).Google Scholar
15 Wirges, W., Yilmaz, S., Brinker, W., Bauer-Gogonea, S., Bauer, S., Jäger, M., Stegeman, G., Ahlheim, M., Stähelin, M., Zysset, B., Lehr, F., Diemeer, M. and Flipse, M., “Polymer waveguides with inverted nonlinear layers for optimizing the overlap integral for modal dispersion phase-matched secondharmonic generation”, Appl. Phys. Lett., 70, 33473349 (1996).Google Scholar
16 Jäiger, M., Stegeman, G., Yilmaz, S., Wirges, W., Brinker, W., Bauer-Gogonea, S., Bauer, S., Ahlheim, M., Stähelin, M., Zysset, B., Lehr, F., Diemeer, M. and Flipse, M., “Poling and characterization of polymer waveguides for modal dispersion phase-matched second harmonic generation ”, JOSA B, special feature on NLO materials, accepted for publication (1997).Google Scholar
17 Jäiger, M., “Efficient second harmonic generation in poled polymer waveguides using copropagating geometries”, Dissertation, defended July 1997, CREOL - Univ. of Central Florida (1997).Google Scholar
18 These DRI doped polymer based samples were prepared at the Heinrich Hertz Institute fur Nachrichtentechnik in Berlin.Google Scholar
19 Thermocarbon, Inc., specialized in diamond grinding technology for efficient dicing is located in Central Florida.Google Scholar
20 Park, C. K., Zieba, J., Zhao, C. F., Swedek, B., Wijekoon, W. M. K. P. and Prasad, P. N., “Highly crosslinked polyurethane with enhanced stability of second-order nonlinear properties”, Macromolecules, 28, 3713, (1995).Google Scholar