Hostname: page-component-8448b6f56d-c47g7 Total loading time: 0 Render date: 2024-04-19T03:27:55.173Z Has data issue: false hasContentIssue false

Adhesion Assessment of Copper Thin Films

Published online by Cambridge University Press:  10 February 2011

M. D. Kriese
Affiliation:
Dept of Chemical Engineering & Materials Science, University of Minnesota, Minneapolis
N. R. Moody
Affiliation:
Sandia National Laboratories, Livermore, CA
W. W. Gerberich
Affiliation:
Dept of Chemical Engineering & Materials Science, University of Minnesota, Minneapolis
Get access

Abstract

Nano-indentation testing has been used to quantitatively assess the adhesion of thin copper films, sputtered to thicknesses of 150 nm to 1500 nm. Copper films of low residual stress were deposited via RF diode cathode sputtering onto SiO2/Si substrates. Overlayers of DC magnetron sputtered high residual stress tungsten, 850 nm thick, were additionally used to provide a driving force for delamination. All films tested exhibited buckle-driven delamination, from which the interfacial toughness was estimated to be 0.2 – 2 J/m2, which is comparable to the thermodynamic work of adhesion. The use of an overlayer requires extensions of existing models, but otherwise does not change the interfacial adhesion, allowing measurements of films that would not otherwise delaminate.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Rice, J.R., J. Appl. Mech., 55, 98103 (1988).Google Scholar
2. Cao, H.C. and Evans, A.G., Acta metall., 39, 2997 (1991).Google Scholar
3. Evans, A.G. and Dalgleish, B.J., Mater. Sci. & Eng., A162, 1 (1993).Google Scholar
4. Evans, A.G., Riihle, M., Dalgleish, B.J., and Charalambides, P.G., Mater. Sci. & Eng., A126, 5364 (1990).Google Scholar
5. Thouless, M.D., Evans, A.G., Ashby, M.F., and Hutchinson, J.W., Acta metall., 35, 1333 (1987).Google Scholar
6. Suo, Z. and Hutchinson, J.W., Int. J. of Frac, 43, 1 (1990).Google Scholar
7. Hutchinson, J.W., Thouless, M.D., and Liniger, E.G., Acta metall., 40, 295 (1992).Google Scholar
8. Thouless, M.D., Hutchinson, J.W., and Liniger, E.G., Acta metall., 40, 26392649 (1992).Google Scholar
9. Evans, A.G., Drory, M.D., and Hu, M.S., J. Mater. Res., 3, 10431049 (1988).Google Scholar
10. Jensen, H.M., Hutchinson, J.W., and Kim, K.-S., Int. J. Sol. Struc, 26, 10991114 (1990).Google Scholar
11. Jensen, H.M. and Thouless, M.D., Int. J. Sol. Struc, 30, 779 (1993).Google Scholar
12. Cao, H.C. and Evans, A.G., Mechanics of Materials, 7, 295304 (1989).Google Scholar
13. Marshall, D.B. and Evans, A.G., J. Appl. Phys., 56, 26322638 (1984).Google Scholar
14. Hutchinson, J.W. and Suo, Z., Mixed mode cracking in layered materials, in Advances in Applied Mechanics (Academic Press, Inc., New York, 1992), p. 63169.Google Scholar
15. Bagchi, A., Lucas, G.E., Suo, Z., and Evans, A.G., J. Mater. Res., 9, 1734 (1994).Google Scholar
16. Moody, N.R., Hwang, R.Q., Angelo, J.E., Venkataraman, S., and Gerberich, W.W., submitted to Acta Materialia (1997).Google Scholar
17. Bahr, D.F., Hoehn, J.W., Moody, N.R., and Gerberich, W.W., submitted to Acta Materialia (1997).Google Scholar
18. Ohring, M., in The Materials Science of Thin Films, (Academic Press, New York, 1992).Google Scholar
19. Stoney, G.C., Proc. R. Soc. London, A82, 172 (1909).Google Scholar
20. Meyers, M. A. and Chawla, K.K., in Mechanical Metallurgy- Principles and Applications (Prentice-Hall Inc., Englewood Cliffs, NJ, 1984).Google Scholar
21. Oliver, W.C. and Pharr, G.M., J. Mater. Res., 7, 564 (1992).Google Scholar
22. Rossington, C., Evans, A.G., Marshall, D.B., and Khuri-Takub, B.T., J. Appl. Phys., 56, 26392644 (1984).Google Scholar
23. Page, T.F. and Hainsworth, S.V., Surfaces and Coatings, 61, 201 (1993).Google Scholar
24. Rosenfield, L.G., Ritter, J.E., Lardner, T.J., and Lin, M.R., J. Appl. Phys., 67, 32913296 (1990).Google Scholar
25. Loubet, J.L., Georges, J.M., and Kapsa, P., in Proc. of the 16th Leeds-Lyon Symposium on Tribology, edited by Dowson, D., (Elsevier, Lyon, France, 1990), p. 429.Google Scholar
26. Beer, F.P. and Johnston, E.R. Jr, in Mechanics of Materials (McGraw-Hill, New York, 1981).Google Scholar
27. Agarwal, B.D. and Broutman, L.J., in Analysis and Performance of Fiber Composites (John Wiley & Sons, Inc., 1990).Google Scholar
28. Johnson, K.L., in Contact Mechanics (Cambridge University Press, New York, 1985).Google Scholar
29. Oh, T.S., Rodel, J., Cannon, R.M., and Ritchie, R.O., Acta metall., 36, 2083 (1988).Google Scholar
30. Rice, J.R. and Wang, J.S., Mater. Sci. & Eng., A107, 23 (1989).Google Scholar
31. Lide, D.R., in 73rd ed., (CRC Press, 1993), p. Pages.Google Scholar
32. Lawn, B., in Fracture of Brittle Solids (Cambridge University Press, 1993).Google Scholar
33. Hoehn, J.W., Ph.D. Thesis, University of Minnesota, 1996.Google Scholar