Hostname: page-component-76fb5796d-r6qrq Total loading time: 0 Render date: 2024-04-25T11:28:01.267Z Has data issue: false hasContentIssue false

Active Sites of Iron Catalysts for Oxidation Reactions - H2O Oxidation and H2O2 Decomposition

Published online by Cambridge University Press:  10 February 2011

V. L. Kuznetsov
Affiliation:
Boreskov Institute of Catalysis SB RAS, Novosibirsk 630090, Russia, vkuz@catalysis.nsk.su
G. L. Elizarova
Affiliation:
Boreskov Institute of Catalysis SB RAS, Novosibirsk 630090, Russia
A. N. Usoltseva
Affiliation:
Boreskov Institute of Catalysis SB RAS, Novosibirsk 630090, Russia
L. G. Matvienko
Affiliation:
Boreskov Institute of Catalysis SB RAS, Novosibirsk 630090, Russia
O. I. Shchegolikhina
Affiliation:
Institute of Elementoorganic Compounds RAS, Moscow, Russia
Get access

Abstract

Systems containing metal ions stabilized in Si-O matrix are perspective for the development of new selective oxidation catalysts. The comparative study of the following catalysts were performed to elucidate the influence of structural factors on the catalytic properties of iron systems in the reactions H2O oxidation, H2O2 decomposition, N2O decomposition and 16O2 ⇔ O18O2 exchange. The following catalysts were used: A) carbon-supported polyhedral silsesquioxanes (PhSiO1.5)12(MO)nL ((MO)n = (FeO)6, Fe2Ni4O6, (NiO)6; L=ROH, H2O); B) Fe-containing zeolites ZSM-5 (0.1−3.5 wt.% Fe); C) hydroxocomplexes Fe4(OH)10SO4 and NaFe3(OH)6(SO4)2). Fe silsesquoxanes in contrast to Fe-ZSM5 do not activate N2O decomposition and isotopie oxygen exchange. However, they are active in H2O oxidation and H2O2 decomposition. It was found that both reactions proceed via nonradical mechanism in the presence of Fe heterogeneous catalysts. For H2O oxidation active site contains at least two Fe atoms situated at appropriate distance from each other. H2O2 decomposition can proceed with participation either one and two metal active sites.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Heme Proteins, edited by Eichrom, G.L., Marzilli, L.G. (Elsevier Science Publishers, New York, 1988), 7.Google Scholar
2. Iron-Sulfur Proteins, edited by Lovenberg, W. (Academic Press, New York, 1977), 13.Google Scholar
3. Iron-Sulfur Proteins, edited by Spiro, T.G., (Willey and Sons, New York, 1982), 4.Google Scholar
4. Springer, , Sligar, S.G., Olson, J.S., Phillips, G.N. Jr, Chem. Rev. 94, 699 (1994).Google Scholar
5. Feig, and Lippard, S.J., Chem. Rev. 94, 759 (1994).Google Scholar
6. Catalytic oxydations with Hydrogen Peroxide as Oxidant, edited by Strucul, G. (Kluver Acadmic Publishers, 1992), Catalysis by Metal Complexes, 9.Google Scholar
7. Tung, H.-C., Kang, C. and Sawyers, D.T., J. Am. Chem. Soc, 114, 3445 (1992).Google Scholar
8. Taramasso, M., Perego, G.G. and Notari, B., US Patent 4 410 501 (1983).Google Scholar
9. Panov, G.I., Sobolev, V.I. and Kharitonov, A.S., Appl. Catal., 98, 1 (1993).Google Scholar
10. Panov, G.I., Sobolev, V.I., Dubkov, K.A., Kharitonov, A.S., in 11 th International Congress, on Catalysis. 40 th Anniversary, edited Hightower, J.W., Delgass, W.N., Iglesia, E. and Bell, A.T., Studies in Surface Science in Catalysis, 101, 493 (1996).Google Scholar
11. Shchegolikhina, O.I., Blagodatsikh, I.V., Zhdavov, A.A. in Tailor-made Silicon-Oxygen Compounds. From Molecules to Materials, edited by Corriu, R. and Jutzi, P. (Vieweg & Sohn Verlagsgesellschaft mbH, Braunsschweig/Weisbaden, 1996), p. 177.Google Scholar
12. Zhdavov, A.A., Shchegolikhina, O.I., Molodtsova, Yu.A., Izvestia. Akademii Nauk SSSR, ser. Chem. 1993, No. 5, p. 957.Google Scholar
13. Gavioli, G., Borsari, M., Zucchi, C., Psaro, R., Palyi, G., Ugo, R., Shchegolikhina, O.I., Zhdanov, A.A., J Organometal Chem, 467, 165167 (1994).Google Scholar
14. Kuznetsov, V.L., Elizarova, G.L., Matvienko, L.G., Lantyukhova, I.L., Kolomiichuk, V.N., Zhdanov, A.A., Shchegolikhina, O.I., J. Organomet. Chem. 475, 65 (1994).Google Scholar
15. Marosi, L., Stabenow, J., and Schwarzman, M., Patent DE 2831611 (1980).Google Scholar
16. Margulis, E.V., Savchenko, L.A., Shorokaev, M.M. et. al. Zh. Neorg. Khim.(in Russ.), 20, 1872 (1975).Google Scholar
17. Margulis, E.V., Getzkin, L.S., Zapuskalova, N.A. et. al., Zh. Neorg. Khim.(in Russ.), 21, 1818 (1976).Google Scholar
18. Elizarova, G.L., Matvienko, L.G., Kuznetsov, V.L., Kochubey, D.I., Parmon, V.N., J. Molec. Catal. 103, 43 (1995).Google Scholar
19. Shilov, A.E., in Perspectives in Catalysis, edited by Thomas, J.M. and Zamaraev, K.I. (Blackwell Scientific Publications, Oxford, 1991), p. 169.Google Scholar
20. Klimov, V.V., FEBS Lett., 148, 307 (1982).Google Scholar
21. Filatov, M.J., Elizarova, G.L., Gerasimnov, O.V., Zhidomirov, G.M., Parmon, V.N., J. Mol. Catal. 91, 71 (1994).Google Scholar
22. Sychev, A.Y., Homogeneous Catalysis by Fe Compounds (Rus), (Shtiintsa, Kishinev. 1988).Google Scholar