Hostname: page-component-84b7d79bbc-g7rbq Total loading time: 0 Render date: 2024-07-27T07:31:28.601Z Has data issue: false hasContentIssue false

X-Ray Standing Wave Assisted Layer Deposition and Crystal Growth (Xswdg)

Published online by Cambridge University Press:  10 February 2011

D. C. Meyer
Affiliation:
Institute for Crystallography and Solid State Physics, Dresden University of Technology, D-01062 Dresden, Germany, meyer@physik, phy. tu-dresden. de
P. Paufler
Affiliation:
Institute for Crystallography and Solid State Physics, Dresden University of Technology, D-01062 Dresden, Germany, meyer@physik, phy. tu-dresden. de
Get access

Abstract

We propose to combine layer deposition or crystal growth with an X-ray standing wave field to influence the structure of growth products in-situ on an atomic scale. By placing the periodic local density distribution of energy of these wave fields properly, photo-fragmentation of precursor gases and other relevant processes can be supported at definite atomic sites at the surface of substrates. In certain cases also a local variation of the probability of desorption can be favorable to remove atoms from unwanted adsorption sites. A large number of growth processes is conceivable, which can be affected intentionally that way. The general physical principle behind this proposal is the availability of non-thermal energy contributions on a sub-nanometer scale. The fundamentals of production and application of these wave fields are communicated as well as results of theoretical estimations.

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Meyer, D.C., German patent application No. DE 19726766.1 (24 June 1997).Google Scholar
2. Meacher, D. R., Contemporary Physics 39, No. 5, 329– (1998)Google Scholar
3. Lowndes, D. H., Geohegan, D. B., Eres, D., Mashburn, D. N., Pennycook, S. J., Mat. Res. Soc. Symp. Proc. Vol. 103, 23– (1988).Google Scholar
4. German patent application No. DE 4205832A1 (26 February 1992).Google Scholar
5. Ibuki, T., Hiraya, A., Shobatake, K., J. Chem. Phys. 92, 2797(1990).Google Scholar
6. Takahashi, J., Utsumi, Y., Akazawa, H., Kawashima, I., Urisu, T., Appl. Phys. Lett. 58, 2776(1991).Google Scholar
7. Ikejiri, M., Ogata, T., and Ogawa, H., Nishio, M., Yoshida, A., J. Vac. Sci. Technol. A 12 (2), 278–, (Mar/Apr 1994).Google Scholar
8. Utsumi, Y., Takahashi, J., Urisu, T., J. Vac. Sci. Technol. B 9, 2507(1991).Google Scholar
9. Laue, M. v., “Röntgenstrahl-Interferenzen”, Akademische Verlagsgesellschaft m.b.H., Frankfurt/ Main (1960).Google Scholar
10. Th. Holz, computer program ‘RFA', TU Dresden 1992.Google Scholar
11. Zegenhagen, J., Surface Science Reports 18, 199– (1993).Google Scholar
12. Zegenhagen, J., Materlik, G. and Uelhoff, W., Journal of X-Ray Science and Technology 2, 214– (1990).Google Scholar
13. Knotek, M.L., Physics Today, 24–, (September 1984).Google Scholar
14. Hille, A., THESIS, Universität Hamburg 1996.Google Scholar