Skip to main content Accessibility help
×
Home
Hostname: page-component-559fc8cf4f-6pznq Total loading time: 0.411 Render date: 2021-02-26T04:56:26.463Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": false, "newCiteModal": false, "newCitedByModal": true }

X-ray scattering: a wonderful tool to probe lattice strains in materials with small dimensions

Published online by Cambridge University Press:  01 February 2011

Olivier Thomas
Affiliation:
Stéphane LABAT TECSEN UMR CNRS 6122, Université Paul Cézanne, Marseille, France
Audrey Loubens
Affiliation:
Stéphane LABAT TECSEN UMR CNRS 6122, Université Paul Cézanne, Marseille, France
Patrice Gergaud
Affiliation:
Stéphane LABAT TECSEN UMR CNRS 6122, Université Paul Cézanne, Marseille, France
Get access

Abstract

X-ray diffraction was recognized from the early days as highly sensitive to atomic displacements. Indeed structural crystallography has been very successful in locating with great precision the position of atoms within an individual unit cell. In disordered systems it is the average structure and fluctuations about it that may be determined. In the field of mechanics diffraction may thus be used to evaluate elastic displacement fields. In this short overview we give examples from recent work where x-ray diffraction has been used to investigate average strains in lines, films or multilayers. In small objects the proximity of surfaces or interfaces may create very inhomogeneous displacement fields. X-ray scattering is again one of the best methods to determine such distributions. The need to characterize displacement fields in nanostructures together with the advent of third generation synchrotron radiation sources has generated new and powerful methods (anomalous diffraction, coherent diffraction, microdiffraction, …). We review some of the recent and promising results in the field of strain measurements in small dimensions via X-ray diffraction.

Type
Research Article
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below.

References

[1] See e.g. Birnbaum, J., Williams, R., Phys. Today Jan 2000.Google Scholar
[2] Arzt, E., Prog. Mat. Sci. 46, 283 (2001).CrossRefGoogle Scholar
[3] Lester, H. and Aborn, R., Army Ordnance 6, 120 (1925).Google Scholar
[4] Sachs, G., Weerts, J., Z. Physik 64, 344 (1930).CrossRefGoogle Scholar
[5] Noyan, I. and Cohen, J., Residual stress: Measurement by diffraction and interpretation, (Springer, New York, 1987).CrossRefGoogle Scholar
[6] Clemens, B. and Bain, J., MRS Bulletin 17–7, 46 (1992).CrossRefGoogle Scholar
[7] Besser, P., Brennan, S., Bravman, J., J. Mat. Res. 9, 13 (1996).CrossRefGoogle Scholar
[8] Thomas, O., Shen, Q., Schieffer, P., Tournerie, N., Lepine, B., Phys. Rev. Lett. 90, 017205 (2003).CrossRefGoogle Scholar
[9] Labat, S., Gergaud, P., Thomas, O., Gilles, B., Marty, A., J. Appl. Phys. 87, 1172 (2000).CrossRefGoogle Scholar
[10] Labat, S., Gergaud, P., Thomas, O., Gilles, B., Marty, A., Appl. Phys. Lett. 75, 914 (1999).CrossRefGoogle Scholar
[11] Raabe, D., Sachtleber, M., Zhao, Z., Roters, F., Zaefferer, S., Acta Mat. 49, 3433 (2001).CrossRefGoogle Scholar
[12] Spolenak, R., Brown, W., Tamura, N., MacDowell, A., Celestre, R., Padmore, H., Valek, B., Bravman, J.C., Marieb, T., Fujimoto, H., Batterman, B., Patel, J., Phys. Rev. Lett. 90, 096102 (2003). See also this proceeding.CrossRefGoogle Scholar
[13] Bergemann, C., Keymeulen, H., J.F. van der Veen, Phys. Rev. Lett. 91, 204801 (2003).Google Scholar
[14] Williamson, G., Hall, W., Acta Met. 1, 52 (1953).Google Scholar
[15] Mittemeijer, E. J., Scardi, P., Diffraction Analysis of the Microstructure of Materials, Springer-Verlag, Berlin Heidelberg 2004.CrossRefGoogle Scholar
[16] Shen, Q., Kycia, S., Phys. Rev. B 55, 15791 (1997).CrossRefGoogle Scholar
[17] Robinson, I.K., Vartanyants, I., Appl. Surf. Sci. 182, 186 (2001).CrossRefGoogle Scholar
[18] Holy, V., Darhuber, A., Bauer, G., Wang, P., Song, Y., Sotomayor Torres, C., Holland, M., Phys. Rev. B 52, 8348 (1995).CrossRefGoogle Scholar
[19] Bocquet, F., Gergaud, P. and Thomas, O., J. Appl. Cryst. 36, 154 (2003).CrossRefGoogle Scholar
[20] Renevier, H., Hodeau, J-L., Wolfers, P., Andrieu, S., Weigelt, J., Frahm, R., Phys. Rev. Lett. 78, 2775 (1997).CrossRefGoogle Scholar
[21] Bigault, T., Bocquet, F., Labat, S., Thomas, O., Renevier, H., Phys. Rev B. 64, 125414 (2001).CrossRefGoogle Scholar
[22] Letoublon, A., Favre-Nicolin, V., Renevier, H., Proietti, M.G., Monat, C., Gendry, M., Marty, O., Priester, C., Phys. Rev. Lett. 92, 186101 (2004).CrossRefGoogle Scholar
[23] Kaganer, V., Jenichen, B., Paris, G., Ploog, K., Konovalov, O., Mikulik, P., Arai, S., Phys. Rev. B 66, 035310 (2002).CrossRefGoogle Scholar
[24] Loubens, A., Fortunier, R., Thomas, O., to be published.Google Scholar
[25] Joo, H.D., Kim, J.S., Kim, K.H., Tamura, N. and Koo, Y.M., Scripta Materialia 51, 1183 (2004).CrossRefGoogle Scholar
[26] Erdélyi, Z., Sladecek, M., Stadler, L-M., Zizak, I., Langer, G. A., Kis-Varga, M., Beke, D. and Sepiol, B., Science 306, 1913 (2004).CrossRefGoogle Scholar
[27] Gergaud, P., Rivero, C., Gailhanou, M., Thomas, O., Froment, B., Jaouen, H., Mat. Sci. Eng. B 114–115, 67 (2004).CrossRefGoogle Scholar
[28] Bérar, J.-F., Blanquart, L., Boudet, N., Breugnon, P., Caillot, B., Clemens, J.-C., Delpierre, P., Koudobine, I., Mouget, C., Potheau, R. and Valin, I. J. Appl. Cryst. 35, 471 (2002).CrossRefGoogle Scholar
[29] Orthen, A., Wagner, H., Martoiu, S., Amenitsch, H., Bernstorff, S., Besch, H.-J., Menk, R.-H., Nurdan, K., Rappolt, M., Walenta, A. H. and Werthenbach, U., J. Synchrotron Rad. 11, 177 (2004).CrossRefGoogle Scholar

Full text views

Full text views reflects PDF downloads, PDFs sent to Google Drive, Dropbox and Kindle and HTML full text views.

Total number of HTML views: 0
Total number of PDF views: 8 *
View data table for this chart

* Views captured on Cambridge Core between September 2016 - 26th February 2021. This data will be updated every 24 hours.

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

X-ray scattering: a wonderful tool to probe lattice strains in materials with small dimensions
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

X-ray scattering: a wonderful tool to probe lattice strains in materials with small dimensions
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

X-ray scattering: a wonderful tool to probe lattice strains in materials with small dimensions
Available formats
×
×

Reply to: Submit a response


Your details


Conflicting interests

Do you have any conflicting interests? *