Skip to main content Accessibility help
×
Home

Wide Bandgap Materials for Semiconductor Spintronics

Published online by Cambridge University Press:  01 February 2011

S. J. Pearton
Affiliation:
Department of Materials Science and Engineering, University of Florida, Gainesville, FL 32611, USA
C. R. Abernathy
Affiliation:
Department of Materials Science and Engineering, University of Florida, Gainesville, FL 32611, USA
G. T. Thaler
Affiliation:
Department of Materials Science and Engineering, University of Florida, Gainesville, FL 32611, USA
R. Frazier
Affiliation:
Department of Materials Science and Engineering, University of Florida, Gainesville, FL 32611, USA
D. P. Norton
Affiliation:
Department of Materials Science and Engineering, University of Florida, Gainesville, FL 32611, USA
J. Kelly
Affiliation:
Department of Physics, University of Florida, Gainesville, FL 32611, USA
R. Rairigh
Affiliation:
Department of Physics, University of Florida, Gainesville, FL 32611, USA
A. F. Hebard
Affiliation:
Department of Physics, University of Florida, Gainesville, FL 32611, USA
Y. D. Park
Affiliation:
Center for Strongly Correlated Materials Research, Seoul,151–747, Korea
J. M. Zavada
Affiliation:
US Army Research Office, Research Triangle Park, NC 27709, USA
Get access

Abstract

Existing semiconductor electronic and photonic devices utilize the charge on electrons and holes in order to perform their specific functionality such as signal processing or light emission. The relatively new field of semiconductor spintronics seeks, in addition, to exploit the spin of charge carriers in new generations of transistors, lasers and integrated magnetic sensors. The ability to control of spin injection, transport and detection leads to the potential for new classes of ultra-low power, high speed memory, logic and photonic devices. The utility of such devices depends on the availability of materials with practical (>300K) magnetic ordering temperatures. In this paper, we summarize recent progress in dilute magnetic semiconductors such as (Ga,Mn)N, (Ga,Mn)P and (Zn,Mn)O exhibiting room temperature ferromagnetism, the origins of the magnetism and its potential applications in novel devices such as spin-polarized light emitters and spin field effect transistors.

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below.

References

1 Wolf, S. A., Awschalom, D. D., Buhrman, R. A., Daughton, J. M., von Molnar, S., Roukes, M. L., Chtchelkanova, A. Y., and Treger, D. M., Science 294, 1488 (2001).CrossRefGoogle Scholar
2. Awschalom, D. D., Loss, D., and Samarth, N., Editors, Semiconductor Spintronics and Quantum Computation (Springer, Berlin, 2002).CrossRefGoogle Scholar
3. Ball, P., Nature 404, 918 (2000).CrossRefGoogle Scholar
4. Awschalom, D. D. and Kikkawa, J. M., Phys. Today 52, 33 (1999);CrossRefGoogle Scholar
Awschalom, D. D., Flatté, M. E., and Samarth, N., Sci. Am. 286, 67 (2002).CrossRefGoogle Scholar
5. von Molnar, S. and Read, D., J. Mag. Mag. Mater. 242–245 13(2002).CrossRefGoogle Scholar
6. Pearton, S.J., Abernathy, C.R., Overberg, M.E., Thaler, G.T., Norton, D.P., Theodorpoulou, N., Hebard, A. F., Park, Y.D., Ren, F., Kim, J. and Boatner, L.A., J. Appl. Phys. 93 1(2003).CrossRefGoogle Scholar
7. Pearton, S.J., Abernathy, C.R., Norton, D.P., Hebard, A.F., Park, Y.D., Boatner, L.A. and Budai, J.D., Mat. Sci. Eng. R 40 137(2003)CrossRefGoogle Scholar
8. Baibich, M. et al., Phys. Rev. Lett. 61, 2472 (1988);CrossRefGoogle Scholar
Barnas, J., Fuss, A., Camley, R., Grunberg, P., Zinn, W., Phys. Rev. B42, 8110 (1990).CrossRefGoogle Scholar
9. Datta, S. and Das, B., Appl. Phys. Lett. 56, 665 (1990).CrossRefGoogle Scholar
10. Burkard, G., Loss, D., and DiVincenzo, D. P., Phys. Rev. B 59, 2070 (1999).CrossRefGoogle Scholar
11. Semiconductors and Semimetals, Vol. 25: Dilute Magnetic Semiconductors. Series Editors: Willardson, R. K. and Beer, A. C.. Volume Editors: Furdyna, J. K. and Kossut, J. (Academic Press, Boston, 1988);Google Scholar
Furdyna, J. K., J. Appl. Phys., 64, R29 (1988);CrossRefGoogle Scholar
Jain, M., Editor, Diluted Magnetic Semiconductors (World Scientific, Singapore, 1991).CrossRefGoogle Scholar
12. Ohno, H., Science, 281, 951 (1988), and references therein.CrossRefGoogle Scholar
13. Ohno, Y., Young, D. K., Beschoten, B., Matsukura, F., Ohno, H., and Awschalom, D. D., Nature 402, 790 (1999);CrossRefGoogle Scholar
Beschoten, B., Crowell, P. A., Malajovich, I., Awschalom, D. D., Matsukura, F., Shen, A., and Ohno, H., Phys. Rev. Lett. 83, 3073 (1999).CrossRefGoogle Scholar
14. Ohno, H., et al., Nature 408, 944 (2000).CrossRefGoogle Scholar
15. Gopalan, S. and Cottam, M. G., Phys. Rev. B 42, 10311 (1990).CrossRefGoogle Scholar
16. Haas, C., Crit. Rev. Solid State Sci. 1, 47 (1970).CrossRefGoogle Scholar
17. Suski, T., Igalson, J., and Story, T., J. Magn. Magn. Mater. 66, 325 (1987).CrossRefGoogle Scholar
18. Haury, A., Wasiela, A., Arnoult, A., Cibert, J., Tatarenko, S., Dietl, T., Merled'Aubigne, Y., Phys. Rev. Lett. 79, 511 (1997);CrossRefGoogle Scholar
Kossacki, P., Ferrand, D., Arnoult, A., Cibert, J., Tatarenko, S., Wasiela, A., Merled'Aubigne, Y., Staihli, J. -L., Ganiere, J. -D., Bardyszewski, W., Swiatek, K., Sawicki, M., Wrobel, J., and Dietl, T., Physica E 6, 709 (2000).CrossRefGoogle Scholar
19. Sato, K., Medvedkin, G. A., Nishi, T., Hasegawa, Y., Misawa, R., Hirose, K., and Ishibashi, T., J. Appl. Phys. 89, 7027 (2001).CrossRefGoogle Scholar
20. Overberg, M. E., Gila, B. P., Thaler, G. T., Abernathy, C. R., Pearton, S. J., Theodoropoulou, N. A., McCarthy, K. T., Arnason, S. B., Hebard, A. F., Chu, S. N. G., Wilson, R. G., Zavada, J. M., Park, Y. D., J. Vac. Sci. Technol. B 20, 969 (2002).CrossRefGoogle Scholar
21. Dietl, T., Ohno, H., Matsukura, F., Cubert, J., and Ferrand, D., Science 287, 1019 (2000).CrossRefGoogle Scholar
22. Dietl, T., Haury, A., and Merled'Aubigne, Y., Phys. Rev. B 55, R3347 (1997).CrossRefGoogle Scholar
23. 7. Reed, M.L., El-Masry, N.A., Stadelmaier, H., Ritums, M.E., Reed, N.J., Parker, C.A., Roberts, J.C., and Bedair, S.M., Appl. Phys. Lett. 79, 3473 (2001).CrossRefGoogle Scholar
24. Theodoropoulou, N., Hebard, A.F., Overberg, M.E., Abernathy, C.R., Pearton, S.J., Chu, S.N.G., and Wilson, R.G., Appl. Phys. Lett. 78, 3475 (2001).CrossRefGoogle Scholar
25. Sonoda, S., Shimizu, S., Sasaki, T., Yamamoto, Y. and Hori, H., J. Cryst. Growth 237a239 1358 (2002);CrossRefGoogle Scholar
Sasaki, T., Sonoda, S., Yamamoto, Y., Suga, K., Shimizu, S., Kindo, K. and Hori, H., J. Appl. Phys. 91 7911(2002).CrossRefGoogle Scholar
26. Thaler, G.T., Overberg, M.E., Gila, B., Frazier, R., Abernathy, C.R., Pearton, S.J., Lee, J.S., Lee, S.Y., Park, Y.D., Khim, Z.G., Kim, J. and Ren, F., Appl. Phys. Lett. 80 3964 (2002).CrossRefGoogle Scholar
27. Park, , Lee, H.-J., Cho, Y.C., Jeong, S,-Y., Cho, C.R. and Cho, S., Appl. Phys. Lett. 80, 4187 (2002).CrossRefGoogle Scholar
28. Hashimoto, M., Zhou, Y.-K., Kanamura, M., and Asahi, H., Solid State Commun. 122, 37 (2002).CrossRefGoogle Scholar
29. Overberg, M.E., Abernathy, C.R., Pearton, S.J., Theodoropoulou, N. A., McCarthy, K.T., Hebard, A.F., Appl. Phys. Lett. 79, 1312 (2001).CrossRefGoogle Scholar
30. Kim, K.H., Lee, K.J., Kim, D.J., Kim, H.J., Ihm, Y.E., Djayaprawira, D., Takahashi, M., Kim, C.S., Kim, C.G. and Yoo, S.H., Appl. Phys. Lett. 82 1775(2003).CrossRefGoogle Scholar
31. Dhar, S., Brandt, O., Trampert, A., Daweriz, L., Friendland, K.J., Ploog, K.H., Keller, J., Beschoten, B. and Guntherodt, G., Appl. Phys. Lett. 82 2077(2003).CrossRefGoogle Scholar
32. Jain, M., Kronik, L., Chelikowsky, J. R., and Godlevsky, V. V., Phys. Rev. B64, 245205 (2001).CrossRefGoogle Scholar
33. Kronik, L., Jain, M., and Chelikowsky, J. R., Phys. Rev. B66, R041203 (2002).Google Scholar
34. Soo, Y.L., Kioseouglou, G.., Kim, S., Huang, S., Kaa, Y.H., Kubarawa, S., Owa, S., Kondo, T. and Munekata, H., Appl. Phys. Lett. 79, 3926 (2001);CrossRefGoogle Scholar
Sato, M., Tanida, H., Kato, K., Sasaki, T., Yamamoto, Y., Sonoda, S., Shimiyu, S. and Hori, H., J. Jap. Appl. Phys. 41 4513(2002).CrossRefGoogle Scholar
35. Kulatov, E., Phys. Rev. B 66 045203(2002).CrossRefGoogle Scholar
36. Medvedkin, G.A., Ishibashi, T., Nishi, T. and Hiyata, K., Jap. J. Appl. Phys. 39, L949 (2000).CrossRefGoogle Scholar
37. Hashimoto, M., Zhou, Y.-K., Kanamura, M., and Asahi, H., Solid State Commun. 122, 37 (2002).CrossRefGoogle Scholar
38. Fukumura, T., Jin, Z., Kawasaki, M., Shono, T., Hasegawa, T., Koshikara, S., Koshihara, S. and Koinuma, H., Appl. Phys. Lett. 78, 958 (2001).CrossRefGoogle Scholar
39. Yang, S.G., Pakhomov, A.B., Hung, S.T. and Wong, C.Y., Appl. Phys. Lett. 81, 2418 (2002).CrossRefGoogle Scholar
40. Theodoropoulou, N., Hebard, A.F., Overberg, M.E., Abernathy, C.R., Pearton, S.J., Chu, S.N.G., and Wilson, R.G., Phys. Rev. Lett. 89 107203–1(2002).CrossRefGoogle Scholar
41. Overberg, M.E., Gila, B.P., Thaler, G.T., Abernathy, C.R., Pearton, S.J., Theodoropoulou, N., McCarthy, K.T., Arnason, S.B., Hebard, A.F., Chu, S.N.G., Wilson, R.G., Zavada, J.M., and Park, Y.D., J. Vac. Sci. Technol. B 20 969 (2002).CrossRefGoogle Scholar
42. Cho, S.., Choi, S., Cha, G.B., Hong, S.C., Kim, Y., Zhao, Y.-J., Freeman, A.J., Ketterson, J.B., Kim, B.J., Kim, Y.C. and Choi, B.C., Phys. Rev. Lett. 88 257203–1 (2002).CrossRefGoogle Scholar
43. Medvedkin, G.A., Ishibashi, T., Nishi, T. and Hiyata, K., Jap. J. Appl. Phys. 39, L949 (2000).CrossRefGoogle Scholar
44. Choi, S., Cha, G.B., Hong, S.C., Cho, S., Kim, Y., Ketterson, J.B., Jeong, S.-Y. and Yi, G.C., Solid-State Commun. 122, 165 (2002).CrossRefGoogle Scholar
45. Pearton, S.J., Overberg, , Abernathy, , Theodoropoulou, C.R., N.A., , Hebard, A.F., Chu, S.N.G., Osinsky, A., Zuflyigin, V., Zhu, L.D., Polyakov, A.Y. and Wilson, R.G., J. Appl. Phys. 92 2047(2002).CrossRefGoogle Scholar
46. Theodorpoulou, N., Hebard, A.F., Chu, S.N.G., Overberg, M.E., Abernathy, C.R., Pearton, S.J., Wilson, R.G., Zavada, J.M. and Park, Y.D., J. Vac. Sci. Technol. A20 579(2002)CrossRefGoogle Scholar

Full text views

Full text views reflects PDF downloads, PDFs sent to Google Drive, Dropbox and Kindle and HTML full text views.

Total number of HTML views: 0
Total number of PDF views: 7 *
View data table for this chart

* Views captured on Cambridge Core between September 2016 - 24th January 2021. This data will be updated every 24 hours.

Hostname: page-component-76cb886bbf-9l59n Total loading time: 0.35 Render date: 2021-01-24T10:14:16.610Z Query parameters: { "hasAccess": "0", "openAccess": "0", "isLogged": "0", "lang": "en" } Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": false, "newCiteModal": false }

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Wide Bandgap Materials for Semiconductor Spintronics
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Wide Bandgap Materials for Semiconductor Spintronics
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Wide Bandgap Materials for Semiconductor Spintronics
Available formats
×
×

Reply to: Submit a response


Your details


Conflicting interests

Do you have any conflicting interests? *