No CrossRef data available.
Published online by Cambridge University Press: 26 February 2011
The use of wet-chemical removal of native oxide in a sealed nitrogen ambient prior to deposition of metal on GaAs is shown to be an effective method of engineering the Schottky barrier height of the metal contacts. Due to its higher metal work function, a barrier height of 0.98 eV for Pt on n-type GaAs is demonstrated. This is considerably higher than the barrier height of conventionally processed TiPtAu contacts (0.78 eV). MESFETs fabricated using PtAu bilayer contacts show reverse currents an order of magnitude lower than TiPtAu contacted companion devices, higher reverse breakdown voltages and much lower gate leakage. Utilizing this technology of oxide removal and the PtAu bilayer contact provides a much simpler method of enhancing the barrier height on n-type GaAs than other techniques such as counter-doping the near-surface or inserting an interfacial layer.
Full text views reflects PDF downloads, PDFs sent to Google Drive, Dropbox and Kindle and HTML full text views.
* Views captured on Cambridge Core between September 2016 - 5th March 2021. This data will be updated every 24 hours.