Hostname: page-component-586b7cd67f-t7czq Total loading time: 0 Render date: 2024-12-07T01:00:29.799Z Has data issue: false hasContentIssue false

Unit Shearing Events in Plasticity of Amorphous Silicon

Published online by Cambridge University Press:  26 February 2011

Michael J. Demkowicz
Affiliation:
demkowicz@lanl.gov, MST-8: Structure-Property Relations, LANL, Bikini Atoll Rd., SM30, Mail Stop G755, Los Alamos, NM, 87545, United States, 505-667-0931, 505-667-8021
Ali S. Argon
Affiliation:
argon@mit.edu, MIT, Mechanical Engineering, United States
Get access

Abstract

Plasticity in amorphous silicon (a-Si) as modeled by the Stillinger-Weber (SW) potential was investigated using structure relaxation by potential energy minimization. Irreversible stress drops in the observed mechanical response are the source of plastic deformation in this model directionally bonded material. Every such stress drop was found to be accompanied by atomic rearrangements that give evidence of the existence of unit inelastic shearing events that are characteristic of a-Si and account for plasticity in this material.

Type
Research Article
Copyright
Copyright © Materials Research Society 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Argon, A. S., 1980, Glass: Science and Technology, Uhlman, D. R. and Kreidl, N. J., Ed., Vol. 5, p. 74.Google Scholar
2 Argon, A. S. 1993, “Inelastic Deformation and Fracture of Glassy Solids,” in Plastic Deformation and Fracture of Materials V.6, Mughrabi, H., Ed., VCH Publishers, Weinheim, Germany.Google Scholar
3 Bridgman, P. W., Simon, I., 1953, J. Appl. Phys. 24, 405.Google Scholar
4 Marsh, D. M., 1964, Proc. Roy. Soc. (London) A 279, 420; A 282, 33.Google Scholar
5 Veprek, S., 1999, J. Vac. Sci. Technol. A17, 2401.Google Scholar
6 Argon, A. S., Veprek, S., 2002, Mat. Res. Soc. Symp. Proc. Vol. 697, P1.2. Google Scholar
7 Demkowicz, M. J., Argon, A. S., 2004, Phys. Rev. Lett. 93, 025505.Google Scholar
8 Demkowicz, M. J., Argon, A. S., 2005, Phys. Rev. B 72, part 1, in press.Google Scholar
9 Demkowicz, M. J., Argon, A. S., 2005, Phys. Rev. B 72, part 2, in press.Google Scholar
10 Stillinger, F. H., Weber, T. A., 1985, Phys. Rev. B31, 5262.Google Scholar
11 Tersoff, J., 1986, Phys. Rev. Lett. 56, 632.Google Scholar
12 Balamane, H., Halicioglu, T., Tiller, W. A., 1992, Phys. Rev. B46, 2250.Google Scholar
13 Bazant, M. Z., Kaxiras, E., Justo, J. F., 1997, Phys. Rev. B56, 8542.Google Scholar
14 Luedtke, W. D., Landman, U., 1989, Phys. Rev. B40, 1164.Google Scholar
15 Kluge, M. D., Ray, J. R., 1988, Phys. Rev. B37, 4132.Google Scholar
16 Keblinski, P., Phillpot, S. R., Wolf, D., Gleiter, H., 1996, Phys. Rev. Lett. 77, 2965.Google Scholar
17 Keblinski, P., Phillpot, S. R., Wolf, D., Gleiter, H., 1997, Acta. Mater. 45, 987.Google Scholar
18 Sastry, S., Angell, C. A., 2003, Nature Materials 2, 739.Google Scholar
19 Cai, W., Bulatov, V. V., Justo, J. F., Argon, A. S., Yip, S., 2000, Phys. Rev. Lett. 84, 3346.Google Scholar
20 Malandro, D. L., Lacks, D. J., 1997, J. Chem. Phys. 107, 5804.Google Scholar
21 Malandro, D. L., Lacks, D. J., 1998, J. Chem. Phys. 110, 4593.Google Scholar
22 McClintock, F. A., Argon, A. S., 1966, Mechanical Behavior of Materials, Addison-Wesley, Reading, MA. Google Scholar
23 Eshelby, J. D., 1957, Proc. Roy. Soc. A 241, 376.Google Scholar