Skip to main content Accessibility help
×
Home

Ultrahigh Vacuum Seebeck Effect and Conductivity Measurements on N-Doping of C60 Films

Published online by Cambridge University Press:  26 February 2011

Naoki Hayashi
Affiliation:
lin@mat.chem.nagoya-u.ac.jp, Nagoya University, Department of Chemistry, Graduate School of Science, Furo-cho, Chikusa-ku,, Nagoya, 464-8602, Japan, +81-52-789-2945, +81-52-789-2944
Kaname Kanai
Affiliation:
kaname@mat.chem.nagoya-u.ac.jp, Nagoya University, Department of Chemistry, Graduate School of Science,, Furo-cho, Chikusa-ku,, Nagoya, 464-8602, Japan
Yukio Ouchi
Affiliation:
ohuchi@mat.chem.nagoya-u.ac.jp, Nagoya University, Department of Chemistry, Graduate School of Science,, Furo-cho, Chikusa-ku,, Nagoya, 464-8602, Japan
Kazuhiko Seki
Affiliation:
seki@mat.chem.nagoya-u.ac.jp, Nagoya University, Department of Chemistry, Graduate School of Science,, Furo-cho, Chikusa-ku,, Nagoya, 464-8602, Japan
Get access

Abstract

We constructed an ultrahigh vacuum (UHV) system with which in-situ conductivity and Seebeck coefficient measurements can be performed, including the detailed examination of the oxygen effect. It can also carry out the deposition of metal electrodes and organic films under UHV condition through measurements. The conductive characteristics of fullerene (C60) films were examined by the measurement at conductivity and Seebeck coefficient under UHV. We observed that the conductivity at room temperature was higher than 1×10−3 S cm−1. This value is two orders of magnitude in conductivity higher than the Hamed report. [A. Hamed et al., Phys. Rev. B 47, 10873 (1993).] Seebeck coefficient S was also measured. Its sign was negative, indicating electron conduction for C60 film. After the measurements under UHV, oxygen was introduced into the chamber by a variable leak valve. The conductivity decreased drastically by increasing the pressure of oxygen. It decreased more than five orders from under UHV to 1 atom oxygen. The temperature dependence of the conductivity was also examined. The conductivity was thermally activated. Activation energies of the conductivity increase by increase oxygen pressure. This means that the oxygen act as carrier traps. As an n-type dopant, acridine orange base (AOB) was co-deposited into C60 films. The magnitude in the conductivity increased but not drastic. The conductivity of doped film also decreased by increasing the pressure of oxygen. The conductivity even under 6.6×10−2 Pa, however, was high enough. Though AOB was not effective dopant against C60 film in UHV condition, AOB doped C60 film became resistant to oxygen.

Type
Research Article
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below.

References

1. Hamed, A., Sun, Y. Y., Tao, Y. K., Meng, R. L, et al., Phys. Rev. B 47, 10873 (1993).CrossRefGoogle Scholar
2. Arai, T., Murakami, Y., Suematsu, H., et al., Solid State Commun. 84, 827 (1992).CrossRefGoogle Scholar
3. Tapponnier, A., Biaggio, I., and Günter, P., Appl. Phys. Lett. 86, 112114 (2005).CrossRefGoogle Scholar
4. Pfeiffer, M., Beyer, A., Fritz, T., and Leo, K., Appl. Phys. Lett. 73, 3202 (1998).CrossRefGoogle Scholar
5. Graaf, H., Michaelis, W., Schnurpfeil, G., et al., Organic Electronics 5, 237 (2004).CrossRefGoogle Scholar
6. Şunel, V., Rusu, G.I., Rusu, G.G., Leontie, L., et al., Prog. Organic Coat. 26, 53 (1995).CrossRefGoogle Scholar
7. Gao, W. and Kahn, A., Organic Electronics 3, 53 (2002).CrossRefGoogle Scholar
8. Maenning, B., Pfeiffer, M., Nollau, A., Zhou, X., et al., Phys. Rev. B 64, 195208 (2001).CrossRefGoogle Scholar
9. Blochwitz, J., Fritz, T., Pfeiffer, M., Leo, K., et al., Organic Electronics 2, 97 (2001).CrossRefGoogle Scholar
10. Li, F., Pfeiffer, M., Werner, A., Harada, K., et al., J. Appl. Phys. 100, 023716 (2006).CrossRefGoogle Scholar
11. Miller, A. and Abrahams, E., Phys. Rev. 120, 745 (1960).CrossRefGoogle Scholar
12. Tada, H., Touga, H., Takada, M., and Matsushige, K., Appl. Phys. Lett. 76, 873 (2000).CrossRefGoogle Scholar
13. Nishi, T., Kanai, K., Ouchi, Y., Willis, M. R., and Seki, K., Chem. Phys. 325, 121 (2006).CrossRefGoogle Scholar
14. Benning, P. J., Poirier, D. M., Ohno, T. R., Chen, Y., et al., Phys. Rev. B 45, 6899 (1992).CrossRefGoogle Scholar

Full text views

Full text views reflects PDF downloads, PDFs sent to Google Drive, Dropbox and Kindle and HTML full text views.

Total number of HTML views: 0
Total number of PDF views: 9 *
View data table for this chart

* Views captured on Cambridge Core between September 2016 - 20th January 2021. This data will be updated every 24 hours.

Hostname: page-component-76cb886bbf-tmbpq Total loading time: 0.251 Render date: 2021-01-20T17:28:39.647Z Query parameters: { "hasAccess": "0", "openAccess": "0", "isLogged": "0", "lang": "en" } Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": false, "newCiteModal": false }

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Ultrahigh Vacuum Seebeck Effect and Conductivity Measurements on N-Doping of C60 Films
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Ultrahigh Vacuum Seebeck Effect and Conductivity Measurements on N-Doping of C60 Films
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Ultrahigh Vacuum Seebeck Effect and Conductivity Measurements on N-Doping of C60 Films
Available formats
×
×

Reply to: Submit a response


Your details


Conflicting interests

Do you have any conflicting interests? *