Hostname: page-component-8448b6f56d-42gr6 Total loading time: 0 Render date: 2024-04-24T14:23:50.829Z Has data issue: false hasContentIssue false

Ultra High Voltage Electron Microscopy Study of {113}-Defect Generation in Si Nanowires

Published online by Cambridge University Press:  30 September 2014

J. Vanhellemont
Affiliation:
Research Center for Ultra-High Voltage Electron Microscopy, Osaka University, Japan. On leave from Department of Solid State Sciences, Ghent University, Belgium.
S. Anada
Affiliation:
Research Center for Ultra-High Voltage Electron Microscopy, Osaka University, Japan.
T. Nagase
Affiliation:
Research Center for Ultra-High Voltage Electron Microscopy, Osaka University, Japan.
H. Yasuda
Affiliation:
Research Center for Ultra-High Voltage Electron Microscopy, Osaka University, Japan.
H. Bender
Affiliation:
IMEC, Leuven, Belgium.
R. Rooyackers
Affiliation:
IMEC, Leuven, Belgium.
A. Vandooren
Affiliation:
IMEC, Leuven, Belgium.
Get access

Abstract

Results are presented of a study of {113}-defect formation in Si nanowires with diameters ranging from 50 to 500 nm. The Si nanowires, used for the processing of tunnel-FET's, are etched into a moderately doped epitaxial Si layer on a heavily doped n-type Si substrate. {113}- defects are created in situ by 2 MeV e-irradiation at temperatures between room temperature and 375 °C in an ultra high voltage electron microscope. The observations are discussed in the frame of intrinsic point defect out-diffusion and interaction with dopant atoms.

Type
Articles
Copyright
Copyright © Materials Research Society 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Vandooren, A., Leonelli, D., Rooyackers, R., Arstila, K., Groeseneken, G., and Huyghebaert, C., Solid-State Electronics 72, 82 (2012).CrossRefGoogle Scholar
Schulze, A., Florakis, A., Hantschel, T., Eyben, P., Verhulst, A. S., Rooyackers, R., Vandooren, A., and Vandervorst, W., Appl. Phys. Lett. 102, 052108 (2013).CrossRefGoogle Scholar
Bender, H., and Vanhellemont, J., Phys. Status Solidi A 107, 455 (1988).CrossRefGoogle Scholar
Aseev, A. L., Fedina, L. I., Hoehl, D., and Bartsch, H., Clusters of Interstitial Atoms in Silicon and Germanium, (Akademie Verlag GmbH, 1994).Google Scholar
Vanhellemont, J., and Romano-Rodriguez, A., Appl. Phys. A 57,521 (1993).CrossRefGoogle Scholar
Vanhellemont, J., and Romano-Rodriguez, A., Appl. Phys. A 58, 541 (1994).CrossRefGoogle Scholar
Vanhellemont, J., Romano-Rodriguez, A., Fedina, L., Van Landuyt, J., and Aseev, A., Materials Science and Technology 11, 1194 (1995).CrossRefGoogle Scholar
Vanhellemont, J., Yasuda, H., Tokumoto, Y., Ohno, Y., Suezawa, M., and Yonenaga, I., Phys. Status Solidi A 209, 1902 (2012).CrossRefGoogle Scholar
Bullough, R., Hayns, M. R., and Wood, M. H., J. Nucl. Mater. 90, 44 (1980).CrossRefGoogle Scholar
Vanhellemont, J., J. Appl. Phys. 110, 063519 (2011).CrossRefGoogle Scholar
Vanhellemont, J., Kamiyama, E., and Sueoka, K., ECS J. Solid State Sci. Technol. 2, P166 (2013).CrossRefGoogle Scholar
Watkins, G. D., J. Appl. Phys. 103, 106106 (2008).CrossRefGoogle Scholar
Ranki, V., and Saarinen, K., Phys. Rev. Lett. 93, 255502 (2004).CrossRefGoogle Scholar