Hostname: page-component-76fb5796d-22dnz Total loading time: 0 Render date: 2024-04-25T10:10:02.937Z Has data issue: false hasContentIssue false

Top Electrode Area Dependence on Displacement Property of Lead Zirconate Titanate Films Prepared by Chemical Solution Deposition Process

Published online by Cambridge University Press:  11 February 2011

Takashi Iijima
Affiliation:
Smart Structure Research Center, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba Central 2, 1–1–1 Umezono, Tsukuba 305–8568, Japan
Sachiko Ito
Affiliation:
Smart Structure Research Center, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba Central 2, 1–1–1 Umezono, Tsukuba 305–8568, Japan
Hirofumi Matsuda
Affiliation:
Smart Structure Research Center, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba Central 2, 1–1–1 Umezono, Tsukuba 305–8568, Japan
Get access

Abstract

Effects on ferroelectric and piezoelectric properties of top-electrode diameter variance from 80 to 8 μm were investigated using an AFM probing system connected with a ferroelectric test system with bipolar and unipolar signals at 5 Hz. The Pt and 1.2-μm-thick PZT layers were etched off to prepare Pt top electrode etched samples or Pt/PZT stack etched samples. In the case of bipolar measurement, the top electrode diameter did not affect ferroelectric properties, while the maximum displacement of the butterfly-shaped hysteresis curve, related with piezoelectric response, increased with decreasing top-electrode diameter. On the other hand, the longitudinal piezoelectric constant, AFM d33, calculated from the strain curve slope at 5 Hz, +5 V, increased with decreasing top-electrode diameter. The average value of the Pt/PZT stack-etched AFM d33 almost equals that of Pt-etched AFM d33. Average AFM d33 of the 8-μm-diameter Pt-etched and Pt/PZT stack-etched samples are 129 and 135 pm/V, respectively.

Type
Research Article
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Chen, H.D., Udayakumar, K.R., Cross, L.E., Bernstein, J.J., and Niles, L.C., J. Appl. Phys., 77, 3349 (1995).Google Scholar
2. Wakabayashi, S., Sakata, M., Goto, H., Takeuchi, M., and Yada, T., Jpn. J. Appl. Phys., 35, 5012 (1996).Google Scholar
3. Kholkin, A.L., Wuetchrich, Ch., Taylor, D.V., and Setter, N., Rev. Sci. Instrum., 67, 1935 (1996).Google Scholar
4. Zavala, G., Fendler, J.H., and Trolier-Mckinstry, S., J. Appl. Phys., 81, 7480 (1997).Google Scholar
5. Christman, J.A., Woolcott, R.R. Jr, Kingon, A.I., and Nemanich, R.J., Appl. Phys. Lett., 73, 3851 (1998).Google Scholar
6. Iijima, T., Ito, S., and Matsuda, H., Jpn. J. Appl. Phys., 41, 6735 (2002).Google Scholar
7. Bühlmann, S., Dwir, B., Baborowski, J., and Muralt, P., Appl. Phys. Lett., 80, 3195 (2002).Google Scholar
8. Nagarajan, V., Stanishevsky, A., Chen, L., Zhao, T., Liu, B.-T., Melngailis, J., Roytburd, A.L., Ramesh, R., Finder, J., Yu, Z., Droopad, R., and Eisenbeiser, K., Appl. Phys. Lett., 81, 4215 (2002).Google Scholar
9. Iijima, T., Sanada, N., Hiyama, K., Tsuboi, H., and Okada, M. in Ferroelectric Thin Films VIII, edited by Schwartz, R.W., McIntyre, P.C., Miyasaka, Y., Summerfelt, S.R., and Wouters, D., (Mater. Res. Soc. 596, Pittsburgh, PA, 2000) pp. 223228.Google Scholar
10. Jaffe, B., Cook, W.R. Jr, and Jaffe, H., Piezoelectric Ceramics (Academic Press, London, 1971) p. 146.Google Scholar
11. Iijima, T., Hayashi, Y., and Onagawa, J. in Ferroelectric Thin Films X, edited by Gilbert, S. R., Trolier-McKinstry, S., Miyasaka, Y., Streiffer, S.K., and Wouters, D.J., (Mat. Res. Soc. Symp. Proc., 688, Warrendale, PA, 2002) pp. 343350.Google Scholar