Skip to main content Accessibility help
×
Home
Hostname: page-component-684bc48f8b-g7stk Total loading time: 0.393 Render date: 2021-04-13T00:26:37.951Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": false, "newCiteModal": false, "newCitedByModal": true }

Time-Resolved Imaging and Photoluminescence of Gas-Suspended Nanoparticles Synthesized by Laser Ablation: Dynamics, Transport, Collection, and Ex Situ Analysis

Published online by Cambridge University Press:  15 February 2011

D. B. Geohegan
Affiliation:
Solid State Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831-6056 odg@oml.gov
A. A. Puretzky
Affiliation:
Solid State Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831-6056 odg@oml.gov
G. Duscher
Affiliation:
MPI für Metallforschung, Institut für Werkstoffwissenschaft, Seestr. 92, D-70174 Stuttgart
S. J. Pennycook
Affiliation:
Solid State Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831-6056 odg@oml.gov
Corresponding
E-mail address:
Get access

Abstract

The dynamics of gas phase nanoparticle formation by pulsed laser ablation into background gases are revealed by imaging photoluminescence and Rayleigh-scattered light from gas-suspended SiOx nanoparticles following ablation of c-Si targets into 1-10 Torr He and Ar. Two sets of dynamic phenomena are presented for times up to 15 s after KrF-laser ablation. Ablation of Si into heavier Ar results in a uniform, stationary plume of nanoparticles while Si ablation into lighter He results in a turbulent ring of particles which propagates forward at 10 m/s. The effects of gas flow on nanoparticle formation, photoluminescence, and collection are described. The first in situ time-resolved photoluminescence spectra from 1-10 nm diameter silicon particles were measured as the nanoparticles were formed and transported. Three spectral bands (1.8, 2.5 and 3.2 eV) similar to photoluminescence from oxidized porous silicon were measured, but with a pronounced vibronic structure. The size and composition of individual gas-condensed nanoparticles were determined by scanning transmission electron microscopy and correlated with the gas-phase photoluminescence. Weblike-aggregate nanoparticle films were collected at room temperature and 77K on c-Si substrates. After standard passivation anneals, the films exhibited strong room temperature photo-luminescence consisting of 3 spectral bands in agreement with the gas-phase measurements, however lacking the vibronic structure. These techniques demonstrate new ways to study and optimize the luminescence of novel optoelectronic nanomaterials during synthesis in the gas phase, prior to deposition.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below.

References

1. Kroto, H.W., Heath, J. R., O'Brien, S. C., Curl, R.F., and Smalley, R. E., Nature 318, 162 (1985).CrossRefGoogle Scholar
2. Wilson, W. L., Szajowski, P. F., Brus, L.E., Science 262, 1242 (1993).CrossRefGoogle Scholar
3. Schuppler, S., Friedman, S. L., Marcus, M. A., Adler, D. L., Xie, Y.-H., Ross, F. M., Chabal, Y. J., Harris, T. D., Brus, L.E., Brown, W.L., Chaban, E. E., Szajowski, P. F., Christman, S. B., and Citrin, P. H., Phys. Rev. B 52, 4910 (1995).CrossRefGoogle Scholar
4. (a) Chiu, L.A., Seraphin, A. A., and Kolenbrander, K.D., J. Electronic Materials 23, 347 (1994).CrossRefGoogle Scholar
(b) Werwa, E., Seraphin, A. A., Chiu, L.A., Zhou, C., and Kolenbrander, K.D., Appl. Phys. Lett. 64, 1821 (1994).CrossRefGoogle Scholar
5. (a) El-Shall, M.S., Li, S., and Turkki, T., Graiver, D., Pernisz, U.C., Baraton, M.I., J.Phys. Chem. 99, 17805 (1995).CrossRefGoogle Scholar
(b) Li, S., Silvers, S.J., and El-Shall, M. S., J. Phys. Chem. B, 101, 1794 (1997).CrossRefGoogle Scholar
6. Movtchan, I.A., Marine, W., Dreyfus, R.W., Le, H.C., Sentis, M., and Autric, M., Appl. Surf. Sci. 96–98, 251 (1996).CrossRefGoogle Scholar
7. (a) Yoshida, T., Takeyama, S., Yamada, Y., and Mutoh, K., Appl. Phys. Lett. 68, 1772 (1996).CrossRefGoogle Scholar
(b) Yamada, Y., Orii, T., Umezu, I., Takeyama, S. and Yoshida, T., Jpn. J. Appl. Phys. 35, 1361 (1996).CrossRefGoogle Scholar
8. Makimura, T., Kunii, Y., and Murakami, K., Jpn. J. Appl. Phys., 35 4780 (1996).CrossRefGoogle Scholar
9. (a) Pulsed Laser Deposition of Thin Films, Ed. by Chrisey, D. B. and Hubler, G. K., (Wiley-Interscience Publisher), 1994.,Google Scholar
(b) Lowndes, D.H., Geohegan, D. B., Puretzky, A. A., Norton, D. P., and Rouleau, C.M., Science 273, 898 (1996).CrossRefGoogle Scholar
10. Yoshida, T., Yamada, Y., and Orii, T., Technical Digest of the International Electron Devices Meeting, San Francisco, CA, Dec. 8-11, 1996, IEEE.Google Scholar
11. Hirschman, K.D., Tsybeskov, L., Duttagupta, S.P., and Fauchet, P.M., Nature 384, 338 (1996).CrossRefGoogle Scholar
12. Muramoto, J., Nakata, Y., Okada, T. and Maeda, M., Jpn. J. Appl. Phys. 36 L563 (1997).CrossRefGoogle Scholar
13. Geohegan, D. B., Puretzky, A. A., Duscher, G., and Pennycook, S. J., Appl. Phys. Lett. (in press).Google Scholar
14. Geohegan, D. B., (a) Appl. Phys. Lett. 60, 2732 (1992).CrossRefGoogle Scholar
(b) Geohegan, D. B., Thin Solid Films 220, 138 (1992).CrossRefGoogle Scholar
15. van de Hulst, H.C.: Light Scattering by Small Particles (Dover Publications, New York, 1981). Rayleigh scattering from silicon spheres, θ = 90°, with (φ = 2.9 × 1017 cm-2 photons, gives 3.1 × 10-7 r6 photons/particle at our CCD detector, requiring a density of r = 7.5 × 1012 r-6 cm-3 particles of radius r (in nm) for 1 count/pixel. To detect 1 nm particles, 2.7% of the plume atoms would need to condense.Google Scholar
16. Broad reviews are given by (a) Fauchet, P. M., J. Lumin. 70, 294 (1996).CrossRefGoogle Scholar
(b) Koch, F., Petrova-Koch, V., J. Non-Cryst. Solids 198–200, 846 (1996).Google Scholar
17. (a) Jarrold, Martin F., Science 252, 1085 (1991).CrossRefGoogle Scholar
(b) Honea, E.C., Kraus, J. S., Bower, J. E., and Jarrold, M. F., Z. Phys. D 26, 141 (1993).CrossRefGoogle Scholar
18. Geohegan, D. B., Puretzky, A. A., Duscher, G., and Pennycook, S. J., submitted. Google Scholar
19. (a) Wood, R.F., Chen, K.R., Lebouef, J. N., Puretzky, A. A., and Geohegan, D. B., Phys. Rev. Lett. 79, 1571 (1997).CrossRefGoogle Scholar
(b) Geohegan, D. B. and Puretzky, A. A. Appl. Phys. Lett. 67, 197 (1995).CrossRefGoogle Scholar
(c) Appl. Surf. Sci. 96–98, 131 (1996).Google Scholar
20. (a) Proot, J.P., Delerue, C., and Allan, G., Appl. Phys. Lett. 61, 1948 (1992).CrossRefGoogle Scholar
(b) Takagahara, T. and Takeda, K., Phys. Rev. B 46, 15578 (1992).CrossRefGoogle Scholar
21. Zhao, X., Schoenfeld, O., Komuro, S., Aoyagi, Y., Sugano, T., (a)Phys. Rev. B 50, 18654 (1994).CrossRefGoogle Scholar
(b) Zhao, X., Schoenfeld, O., Komuro, S., Aoyagi, Y., Sugano, T., Jpn. J. Appl. Phys. 33, L899 (1994).CrossRefGoogle Scholar
22. Hummel, R. E., Ludwig, M.H., Chang, S. S., Fauchet, P.M., Vandyshev, Ju. V., and Tsybeskov, L., Solid State Comm. 95, 553 (1995).CrossRefGoogle Scholar
23. Morisaki, H., Hashimoto, H., Ping, F.W., Nozawa, H., and Ono, H., J. Appl. Phys. 74, 2977 (1993).CrossRefGoogle Scholar
24. Zhang, Q., Bayliss, S. C., Hutt, D. A., Appl. Phys. Lett. 66, 1977 (1995).CrossRefGoogle Scholar
25. Kim, K., et al. Appl. Phys. Lett. 69, 3908 (1996).CrossRefGoogle Scholar
26. Choi, W.C., et al. , Appl. Phys. Lett. 69, 3402 (1996).CrossRefGoogle Scholar
27. Dinh, L.N., Chase, L.L., Balooch, M., Siekhaus, W.J., and Wooten, F., Phys. Rev. B, 54, 5029 (1996).CrossRefGoogle Scholar
28. These include hydrocarbon contaminants (see Canham, L. T., Loni, A., Calcott, P.D. J., Simons, A. J., Reeves, C., Houlton, R., Newey, J. P., Nash, K. J., Cox, T. I., Thin Solid Films 276, 112 (1996).), siloxene (M.S. Brandt, H. D. Fuchs, M. Stutzmann, J. Weber and M. Cardona, Solid State Comm. 81, 307 (1992).), silanol (see Ref. 19) or photofragmentation of the Si-clusters themselves (see K.D. Rinnen and M. L. Mandich, Phys. Rev. Lett. 69, 1823 (1992).)CrossRefGoogle Scholar
29. Calcott, P. D. J., Nash, K. J., Canham, L.T., Kane, M. J. (a) Mat. Res. Soc. Symp. Proc. 358, 465 (1995).CrossRefGoogle Scholar
(b) Calcott, P. D. J., Nash, K. J., Canham, L.T., Kane, M. J. and Brumhead, D., J. Lumin. 57, 257 (1993).CrossRefGoogle Scholar
30. Kanemitsu, Y., Shimuzu, N., Komoda, T., Hemment, P.L.F., and Sealy, B. J., Phys. Rev. B 54, R14329 (1996).CrossRefGoogle Scholar
31. Suemoto, T., Tanaka, K., Nakajima, A., and Hakura, T., Phys. Rev. Lett. 70, 3659 (1993).CrossRefGoogle Scholar
32. Okada, T., Iwaki, T., Yamamoto, K., Kasahara, H. and Abe, K., Solid State Comm., 49, 809 (1984).CrossRefGoogle Scholar
33. Kimura, K. and Iwasaki, S., Mat. Res. Soc. Symp. Proc., Fall 1997, in press.Google Scholar
34. Spectrum courtesy Makimura, T. et al. , unpublished.Google Scholar
35. Brus, Louis, J. Phys. Chem. 98, 3575 (1994).CrossRefGoogle Scholar

Full text views

Full text views reflects PDF downloads, PDFs sent to Google Drive, Dropbox and Kindle and HTML full text views.

Total number of HTML views: 0
Total number of PDF views: 5 *
View data table for this chart

* Views captured on Cambridge Core between September 2016 - 13th April 2021. This data will be updated every 24 hours.

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Time-Resolved Imaging and Photoluminescence of Gas-Suspended Nanoparticles Synthesized by Laser Ablation: Dynamics, Transport, Collection, and Ex Situ Analysis
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Time-Resolved Imaging and Photoluminescence of Gas-Suspended Nanoparticles Synthesized by Laser Ablation: Dynamics, Transport, Collection, and Ex Situ Analysis
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Time-Resolved Imaging and Photoluminescence of Gas-Suspended Nanoparticles Synthesized by Laser Ablation: Dynamics, Transport, Collection, and Ex Situ Analysis
Available formats
×
×

Reply to: Submit a response


Your details


Conflicting interests

Do you have any conflicting interests? *