Skip to main content Accessibility help
×
Home
Hostname: page-component-77ffc5d9c7-4ck9x Total loading time: 0.536 Render date: 2021-04-23T01:54:54.808Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": false, "newCiteModal": false, "newCitedByModal": true }

THz Pulse Spectroscopy of Dynamic Plasmas: A New Diagnostic Tool

Published online by Cambridge University Press:  31 January 2011

Brian H. Kolner
Affiliation:
bhkolner@ucdavis.edu, University of California, Davis, Applied Science, Davis, California, United States
Corresponding
E-mail address:
Get access

Abstract

Rapidly evolving plasmas represent a challenging environment for both study and control. Density, collision frequency and temperature fluctuations can change over orders of magnitude on time scales of one ns with spatial features less than one cm and thus are not amenable to conventional continuous-wave diagnostic techniques such as microwave or mm-wave interferometry. We have developed a new technique for studying plasmas undergoing rapid nonequilibrium changes that uses THz time-domain spectroscopy (THz-TDS) in conjunction with optical fluorescence imaging. The advantages of using THz pulses lie in the fact that the broad bandwidth of a THz pulse contains frequency components both above and below the plasma frequency allowing a single ps-duration pulse to carry away information about the complex path-integrated susceptibility. Transverse fluorescence gives us a model of the longitudinal plasma distribution and using a novel rms error-minimization technique we can recover the real and imaginary parts of the susceptibility with <5 mm spatial and, potentially, ps time resolution (we are currently limited by S/N considerations to averaging over several THz pulses and thus obtain 40 ns resolution). From this we obtain the electron density and collision frequency, spatially and temporally resolved, with dynamic range >103. The principle of this new technique will be discussed along with results on a pulsed DC-discharge plasma. We will also present some new ideas such as concurrent molecular spectroscopy and computed tomography.

Type
Research Article
Copyright
Copyright © Materials Research Society 2009

Access options

Get access to the full version of this content by using one of the access options below.

References

[1] Koleczko, A. Ehrhardt, W. Kelzenberg, S. and Eisenreich, N. Propellants, Explosives, Pyrotechnics 26, 75 (2001).3.0.CO;2-Q>CrossRefGoogle Scholar
[2] Pilla, G. Galley, D. Lacoste Françoise, D. A., Veynante, D. and Laux, C. O. IEEE Trans. Plasma Sci. 34, 2471 (2006).CrossRefGoogle Scholar
[3] Starikovskaia, S. M. Kukaev, E. N. Kuksin, A. Yu. Nudnova, M. M. and Starikovskii, A. Yu. IEEE Trans. Plasma Sci. 36, 904 (2008).CrossRefGoogle Scholar
[4] Krompholz, H. G. Hatfield, L. L., Neuber, A. A. Kohl, K. P. Chaparro, J. E. and Ryu, H.-Y. IEEE Trans. Plasma Sci. 34, 927 (2006).CrossRefGoogle Scholar
[5] Felsenthal, P. and Proud, J. M. Phys. Rev. 139, A1796 (1965).CrossRefGoogle Scholar
[6] Niayesh, K. Hashemi, E. Agheb, E. and Jadidian, J. IEEE Trans. Plasma Sci. 36, 930 (2008).CrossRefGoogle Scholar
[7] Vasilyak, L. M. Kostyuchenko, S. V. Kudryavtsev, N. N. and Filyugin, I. V. Phys. Uspekhi 37, 247 (1994).CrossRefGoogle Scholar
[8] Wagenaars, E. Bowden, M. D. and Kroesen, G. M. W. Phys. Rev. Lett. 98, 075002 (2007).CrossRefGoogle Scholar
[9] Anikin, N. B. Zaviolava, N. A. Starikovskaia, S. M. and Starikovskii, A. Yu. IEEE Trans. Plasma Sci. 36, 902 (2008).CrossRefGoogle Scholar
[10] Walton, S. G. Leonhardt, D. and Fernsler, R. F. IEEE Trans. Plasma Sci. 33, 838 (2005).CrossRefGoogle Scholar
[11] Ekdahl, C. et al. , IEEE Trans. Plasma Sci. 33, 892 (2005).CrossRefGoogle Scholar
[12] Lauer, E. J. Caporaso, G. J. Chambers, F. W. Chen, Y.-J. Falabella, S. Guethlein, G. McCarrick, J. Richardson, R. Sampayan, S. and Weir, J. in Beams 2002: 14th International Conference on High Power Particle Beams, eds. Melhorn, T. A. and Sweeney, M. A. (American Institute of Physics, 2002), pp. 248251.Google Scholar
[13] Huddletsone, R. H. and Leonard, S. L. eds., Plasma Diagnostic Techniques (Academic Press, 1965).Google Scholar
[14] Heald, M. A. and Wharton, C. B. Plasma Diagnostics with Microwaves (John Wiley and Sons, 1965).CrossRefGoogle Scholar
[15] Luhmann, N. C. Jr. , in Infrared and Millimeter Waves, ed. Button, K. J. (Academic Press, 1979), Vol. 2, chap. 1, pp. 165.Google Scholar
[16] Verón, D., in Infrared and Millimeter Waves, ed. Button, K. J. (Academic Press, 1979), Vol. 2, chap. 2, pp. 67135.Google Scholar
[17] Benk, E. C. Golubiatnikov, G. Y. Fraser, G. T. Ji, B. Motika, S. A. and Karwacki, E. J. J. Vac. Sci. Technol. B 21, 2067 (2003).CrossRefGoogle Scholar
[18] Exter, M. van, Fattinger, C. and Grischkowsky, D. Opt. Lett. 14, 1128 (1989).CrossRefGoogle Scholar
[19] Cheville, R. A. and Grischkowsky, D. Opt. Lett. 20, 1646 (1995).CrossRefGoogle Scholar
[20] Harde, H. Cheville, R. A. and Grischkowsky, D. J. Phys. Chem. A 101, 3646 (1997).CrossRefGoogle Scholar
[21] Harde, H. Zhao, J. Wolff, M. Cheville, R. A. and Grischkowsky, D. J. Phys. Chem. A 105, 6038 (2001).CrossRefGoogle Scholar
[22] Kolner, B. H. Buckles, R. A. Conklin, P. M. and Scott, R. P. IEEE J. Select. Topics Quantum Electron. 14, 505 (2008).CrossRefGoogle Scholar
[23] Luque, J. Juchmann, W. Brinkman, E. A. and Jeffries, J. B. J. Vac. Sci. Technol. A 16, 397 (1998).CrossRefGoogle Scholar
[24] Faris, G. W. Brinkman, E. A. and Jeffries, J. B. Opt. Exp. 7, 447 (2000).CrossRefGoogle Scholar
[25] Chen, F. F. Introduction to Plasma Physics and Controlled Fusion (Plenum Press, 1984), 2nd edn.CrossRefGoogle Scholar
[26] Kolner, B. H. Conklin, P. M. Buckles, R. A. Fontaine, N. K. and Scott, R. P. Appl. Phys. Lett. 87, 151501(1) (2005).CrossRefGoogle Scholar
[27] Cormack, A. M. J. Appl. Phys. 34, 2722 (1963).CrossRefGoogle Scholar
[28] Macovski, A. Medical Imaging Systems (Prentice-Hall, 1983).Google Scholar
[29] Bracewell, R. N. Aust. J. Phys. 9, 198 (1956).CrossRefGoogle Scholar
[30] Bracewell, R. N. and Riddle, A. C. Astrophys. J. 150, 427 (1967).CrossRefGoogle Scholar
[31] Deans, S. R. The Radon Transform and Some of Its Applications (John Wiley & Sons, 1983).Google Scholar
[32] Koslover, R. and McWilliams, R. Rev. Sci. Inst. 57, 2441 (1986).CrossRefGoogle Scholar
[33] Stopper, U. Lindner, P. and Schumacher, U. Rev. Sci. Inst. 78, 043508 (2007).CrossRefGoogle Scholar

Full text views

Full text views reflects PDF downloads, PDFs sent to Google Drive, Dropbox and Kindle and HTML full text views.

Total number of HTML views: 0
Total number of PDF views: 6 *
View data table for this chart

* Views captured on Cambridge Core between September 2016 - 23rd April 2021. This data will be updated every 24 hours.

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

THz Pulse Spectroscopy of Dynamic Plasmas: A New Diagnostic Tool
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

THz Pulse Spectroscopy of Dynamic Plasmas: A New Diagnostic Tool
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

THz Pulse Spectroscopy of Dynamic Plasmas: A New Diagnostic Tool
Available formats
×
×

Reply to: Submit a response


Your details


Conflicting interests

Do you have any conflicting interests? *