Hostname: page-component-848d4c4894-4hhp2 Total loading time: 0 Render date: 2024-05-08T15:26:42.798Z Has data issue: false hasContentIssue false

Third Order Nonlinear Optical Susceptibility of Trans-(CH)x: A Degenerate Ground State Conjugated Polymer

Published online by Cambridge University Press:  25 February 2011

M. Sinclair
Affiliation:
Department of Physics and Institute for Polymers and Organic Solids, University of California, Santa Barbara, CA 93106
D. Moses
Affiliation:
Department of Physics and Institute for Polymers and Organic Solids, University of California, Santa Barbara, CA 93106
K. Akagi
Affiliation:
Department of Physics and Institute for Polymers and Organic Solids, University of California, Santa Barbara, CA 93106
A. J. Heeger
Affiliation:
Department of Physics and Institute for Polymers and Organic Solids, University of California, Santa Barbara, CA 93106
Get access

Abstract

The promise of conducting polymers as fast response nonlinear optical materials has been recently emphasized [1,3]. Polymers such as polyacetylene, polythiophene and the soluble (and processible) poly(3-alkylthienylenes) contain a high density of x-electrons, and they are known to exhibit photoinduced absorption and photoinduced bleaching, indicating major shifts of oscillator strength upon photoexcitation [2,4]. For polyacetylene, these nonlinear effects have been studied in detail in the picosecond [5a,b] and sub-picosecond [5c] time regime and correlated with the photoproduction of charge carriers through fast photoconductivity measurements [6]. The data have demonstrated ultra-fast response with nonlinear shifts in oscillator strength occurring at times of the order of 10-13 seconds. These resonant nonlinear optical properties are intrinsic; they originate from the nonlinearity of the self-localized photoexcitations [7] which characterize this class of polymers: solitons, polarons and bipolarons [4].

Type
Research Article
Copyright
Copyright © Materials Research Society 1988

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Nonlinear Optical Properties of Organic and Polymeric Materials. Ed. by Williams, D.J., American Chemical Society Symposium, Series 233 (Amer. Chem. Soc., Wash, D.C.,1983).Google Scholar
2. Heeger, A.J., Moses, D. and Sinclair, M., Synth. Met. 15, 95 (1986).Google Scholar
3. Kajzar, F., Etemad, S., Baker, G.L. and Messier, J., Synth. Met 17. 563(1987).Google Scholar
4. Orenstein, a. J., in Handbook of Conducting Polymers. Ed. by Skotheim, T.A., (Marcel Dekker, New York and Basel, 1986), Vol.2. b. A.J. Heeger, Polymer Journal, 17, 201 (1985).Google Scholar
5. Vardeny, Z., Strait, J., Moses, D., Chung, T.-C., and Heeger, A.J., Phys. Rev. Lett. 49, 1657 (1982).Google Scholar
6. a. Sinclair, M., Moses, D., Heeger, A.J., Vilhelmsson, K., Valk, B. and Salour, M., Sol. State. Commun. 61, 221 (1987). b. M. Sinclair, D. Moses, and A.J. Heeger, Phys. Rev.B36, 4296 (1987).Google Scholar
7. Heeger, A.J., Moses, D. and Sinclair, M., Synth. Met. 17, 343(1987).Google Scholar
8. Burns, W.K. and Bloembergen, N., Phys. Rev. B4, 3437 (1971).Google Scholar
9. a. Akagi, K., Katayama, S., Shirakawa, H., Araya, K., Mukoh, A. and Narahara, T., Synth. Met. 17, 241(1987). b. K. Araya, A. Mukoh and T. Narahara, K. Akagi, H. Shirakawa, K. Araya, A. Mukoh and T. Narahara, Synth. Met. 17, 247(1987).Google Scholar
10. Aldissi, M., J. Polym. Sci., Polym. Lett. Ed. 23, 167 (1985).Google Scholar
11. Feast, W. J., in Handbook of Conducting Polymers. Ed. by Skotheim, T.A., (Marcel Dekker, New York and Basel, 1986) Vol.1.Google Scholar
12. See references listed in ref. 8.Google Scholar
13. These values were obtained from Kramers-Kronig analysis of the reflectance from highly oriented Durham polyacetylene; G. Leising (private communication).Google Scholar
14. Sauteret, C., Hermann, J.-P., Frey, R., Pradere, F., Ducuing, J., Baughman, R.H., and Chance, R.R., Phys. Rev. Lett. 36 956 (1976).Google Scholar
15. a. Etemad, S., Heeger, A.J. and MacDiarmid, A. G., Ann. Rev. Phys. Chem., 33, 443 (1982). b. J.R. Schrieffer, Highlights of Condensed Matter Theory, Soc. Italiana de Fisica, 89, 300 (1985) c. S. Kivelson, Solitons, Ed. by S. Trullinger and V.L. Pokrovsky (Elsevier Science, B.V., 1986).Google Scholar
16. Flytzanis, C., in reference 1.Google Scholar
17. Polydiacetylenes, Ed. by Bloor, D. and Chance, R.R., NATO ASI Series, No. 102 (Martinus Nuijhoff Dordrecht,Boston, Lancaster, 1985).Google Scholar
18. a. Donovan, K.J. and Wilson, E.G., Phil. Mag. B, 44, 31 (1981). b. L. Sebastian and G. Weiser, Chem. Physics 62, 447, (1981).Google Scholar
19. a. Blanchet, G.B., Fincher, C.R., and Heeger, A.J. Phys. Rev. Lett. 51, 2132 (1983). b. B.R. Weinberger, C.B. Roxlo, S. Etemad, G.L. Baker, and J. Orenstein Phys. Rev. Lett. 53, 86 (1984).Google Scholar
20. a. J. Yu, H. Matsuoka and W.P. Su, Phys. RevB (in press). b. Sethna, J.P. and Kivelson, S., Phys. Rev. B 26, 3513 (1984). c. A. Auerbach and S. Kivelson, Phys. Rev.B33, 8171 (1986). d. Z.B. Su and L. Yu, Phys. Rev. B27, 5199 (1984).Google Scholar
21. Vardeny, Z., Ehrenfreund, E., Brafman, O., and Horovitz, B., Phys. Rev. Left. 51, 2326 (1983).Google Scholar
22. Greene, B.I., Orenstein, J., Millard, R.R. and Williams, L.R., Phys. Rev. Lett. 58, 2750 (1987).Google Scholar
23. Su, W.P. and Schrieffer, J.R., Proc. Nat. Acad. Sci. USA 77, 5626 (1980).Google Scholar
24. Loudon, R., The Quantum Theory of Light (Clarendon Press, Oxford, 1983).Google Scholar
25. Su, W.P., Private Communication.Google Scholar
26. Sinclair, M., Moses, D., Heeger, A.J., Yu, J., Matsuoka, H. and Su, W.P., to be published.Google Scholar