Published online by Cambridge University Press: 31 January 2011
For the material (Pb0.95Sn0.05Te)1-x(PbS)x nanostructuring from nucleation and growth and spinodal decomposition were reported to enhance the thermoelectric figure of merit over bulk PbTe, producing ZT of 1.1 - 1.4 at 650 K for x = 0.08[1]. Thermoelectric modules made from (Pb0.95Sn0.05Te)1-x(PbS)x materials with various hot-side metal electrodes were fabricated and tested. Short circuit current was measured on unicouples of Pb0.95Sn0.05Te – PbS 8% (n-type) legs and Ag0.9Pb9Sn9Sb0.6Te20 (p-type) legs over 10 (A) for a hot side temperature of 870K, and a cold side of 300K. Hot pressed (Pb0.95Sn0.05Te)1-x(PbS)x materials were also investigated for module fabrication. Investigations of the electrical properties of hot-pressed (Pb0.95Sn0.05Te)1-x(PbS)x materials are presented along with the latest advancements in the fabrication and characteristics of modules based on the processing of these materials.