Skip to main content Accessibility help
×
Home

Thermal Losses and Temperature Measurement in SOI MEMS Heater

Published online by Cambridge University Press:  15 March 2011

Nicholas Moelders
Affiliation:
Ion Optics, Inc., 411 Waverley Oaks Road, Waltham, MA 02452
Irina Puscasu
Affiliation:
Ion Optics, Inc., 411 Waverley Oaks Road, Waltham, MA 02452
Mark P. McNeal
Affiliation:
Ion Optics, Inc., 411 Waverley Oaks Road, Waltham, MA 02452
Martin U. Pralle
Affiliation:
Ion Optics, Inc., 411 Waverley Oaks Road, Waltham, MA 02452
Lisa Last
Affiliation:
Ion Optics, Inc., 411 Waverley Oaks Road, Waltham, MA 02452
William Ho
Affiliation:
Ion Optics, Inc., 411 Waverley Oaks Road, Waltham, MA 02452
Anton C. Greenwald
Affiliation:
Ion Optics, Inc., 411 Waverley Oaks Road, Waltham, MA 02452
James T. Daly
Affiliation:
Ion Optics, Inc., 411 Waverley Oaks Road, Waltham, MA 02452
Edward A. Johnson
Affiliation:
Ion Optics, Inc., 411 Waverley Oaks Road, Waltham, MA 02452
Thomas George
Affiliation:
Jet Propulsion Laboratories, Pasadena, CA.
Daniel S. Choi
Affiliation:
Jet Propulsion Laboratories, Pasadena, CA.
Get access

Abstract

A sensor chip has been designed and tested that uses a MEMS strip heater as both source and detector of infrared radiation. An optical cavity reflects infrared radiation back onto the source filament. Changes in reflected light intensity modify heater temperature, and the measured signal is a change in resistance. The effects of processing on electrical and thermal isolation were characterized and used to evaluate device performance. Thermally isolated, uniformly heated emitters are achieved using a backside release etch process. The fully released devices demonstrated superior electric to thermal-optical conversion, with the requisite narrow band emission for CO2 detection. Using these sensor-chips, CO2 detection was demonstrated, with projected sensitivities ≤0.1%.

Type
Research Article
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below.

References

1. Kinkade, B. R., Daly, J. T., and Johnson, E. A., “Simplified Component Architecture for Gas and Chemical Sensors in the Home”, Proc. SENSORS EXPO, 333–338(2000)Google Scholar
2. Johnson, E. A. and Bodkin, A., Patent Pending.Google Scholar
3. Greenwald, A.C., Daly, J.T., Johnson, E.A., Kinkade, B., McNeal, M., Pralle, M., Moelders, N., George, T., Choi, D., Biswas, R. and El-Kady, I., “Narrow Band Emission From Lithographically Defined Bandgap Structures in Silicon: matching Theory and Experiment”, Mat. Res. Sym. Proc., Nov 2000.Google Scholar
4. Johnson, E. A., Patent No. 5838016.Google Scholar
5. Maboudian, R., Ashurst, W. R., Carraro, C., Sensor and Actuators, 82 (1-3), pp. 219223, 2000.CrossRefGoogle Scholar

Full text views

Full text views reflects PDF downloads, PDFs sent to Google Drive, Dropbox and Kindle and HTML full text views.

Total number of HTML views: 0
Total number of PDF views: 8 *
View data table for this chart

* Views captured on Cambridge Core between September 2016 - 24th January 2021. This data will be updated every 24 hours.

Hostname: page-component-76cb886bbf-9l59n Total loading time: 0.279 Render date: 2021-01-24T10:33:03.307Z Query parameters: { "hasAccess": "0", "openAccess": "0", "isLogged": "0", "lang": "en" } Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": false, "newCiteModal": false }

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Thermal Losses and Temperature Measurement in SOI MEMS Heater
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Thermal Losses and Temperature Measurement in SOI MEMS Heater
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Thermal Losses and Temperature Measurement in SOI MEMS Heater
Available formats
×
×

Reply to: Submit a response


Your details


Conflicting interests

Do you have any conflicting interests? *