Skip to main content Accessibility help
×
Home
Hostname: page-component-559fc8cf4f-x5fd4 Total loading time: 0.345 Render date: 2021-02-25T22:56:29.024Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": false, "newCiteModal": false, "newCitedByModal": true }

Terahertz Ellipsometry Using Electron-Beam Based Sources

Published online by Cambridge University Press:  01 February 2011

Tino Hofmann
Affiliation:
thofmann@engr.unl.edu, University of Nebraska-Lincoln, Electrical Engineering, Lincoln, Nebraska, United States
Craig M. Herzinger
Affiliation:
cherzinger@jawoollam.com, J.A. Woollam Co., Inc., Lincoln, Nebraska, United States
Ulrich Schade
Affiliation:
schade@bessy.de, BESSY mbH, Berlin, Germany
Michael Mross
Affiliation:
mmross@vermontphotonics.com, Vermont Photonics Technologies Corporation, Bellows Falls, Vermont, United States
John A. Woollam
Affiliation:
jwoollam@jawoollam.com, J.A. Woollam Co., Inc.,, Lincoln, Nebraska, United States
Mathias Schubert
Affiliation:
schubert@engr.unl.edu, University of Nebraska-Lincoln, Electrical Engineering, Lincoln, Nebraska, United States
Get access

Abstract

The precise determination of materials' optical constants in the THz frequency domain is an important new challenge in basic research and is crucial for novel technological applications. Spectroscopic ellipsometry is known as a vital tool for the determination of the materials' dielectric function including its anisotropy. However, ellipsometric measurements at very long wavelengths are difficult due to the lack of reliable sources of sufficient intensity and brilliance. Here we report on our recent advances to use ellipsometry in combination with different electron beam based sources in order to in investigate condensed matter samples in the frequency range from 0.1 to 8 THz. We successfully employ terahertz radiation emitted from two different tunable desktop sources (Smith-Purcell-effect source and a backward wave oscillator) in a polarizer-sample-analyzer ellipsometer scheme. We discuss and present THz range physical material properties due to bound and unbound charge resonances in semiconducting materials. This research will provide important understanding of optical properties for novel materials, inspire new designs, and accelerate development of optical Terahertz devices.

Type
Research Article
Copyright
Copyright © Materials Research Society 2009

Access options

Get access to the full version of this content by using one of the access options below.

References

1. Siegel, P., IEEE T. Microw. Theory 50, 910 (2002).CrossRefGoogle Scholar
2. Woolard, D., Brown, E., Kemp, M., and Pepper, M., Proceedings of the IEEE 93, 1722 (2005).CrossRefGoogle Scholar
3. Rivory, J. and Abeles, F., Eds., Spectroscopic Ellipsometry: Proceedings of the First International Conference, (Elsevier, Lausanne, 1993).Google Scholar
4. Fried, M., Humlíček, J., and Hingerl, K., Eds., Spectroscopic Ellipsometry: Proceedings of the Third International Conference, (Elsevier, Lausanne, 2004).Google Scholar
5. Collins, R. W., Aspnes, D. E., and Irene, E. A., Eds., Spectroscopic Ellipsometry: Proceedings of the Second International Conference, (Elsevier, Lausanne, 1998).Google Scholar
6. Schubert, M., Arwin, H., and Beck, U., Eds., Spectroscopic Ellipsometry: Proceedings of the Fourth International Conference, (WILEY-VCH, Weinheim, 2007).Google Scholar
7. Thompkins, H. and Irene, E. A., Eds., Handbook of Ellipsometry, (William Andrew Publishing, Norwich, 2004).Google Scholar
8. Azzam, R. M. and Bashara, N. M., Ellipsometry and Polarized Light, (North-Holland Publ. Co., Amsterdam, 1984).Google Scholar
9. Schubert, M., Infrared Ellipsometry on semiconductor layer structures: Phonons, plasmons and polaritons, (Springer, Berlin, 2004).Google Scholar
10. Nagashima, T. and Hangyo, M., Appl. Phys. Lett. 79, 3917 (2001).CrossRefGoogle Scholar
11. Hofmann, T., Schade, U., Eberhardt, W., Herzinger, C., Esquinazi, P., and Schubert, M., Rev. Sci. Inst. 77, 63902 (2006).CrossRefGoogle Scholar
12. Hofmann, T., Schade, U., Agarwal, K., Daniel, B., Klingshirn, C., Hetterich, M., Herzinger, C., and Schubert, M., Appl. Phys. Lett. 88, 105 (2006).CrossRefGoogle Scholar
13. Abo-Bakr, M., Feikes, J., Holldack, K., Wüstefeld, G., and Hübers, H.-W., Phys. Rev. Lett. 88, 254801 (2002).CrossRefGoogle Scholar
14. Abo-Bakr, M., Feikes, J., Holldack, K., Kuske, P., Peatman, W. B., Schade, U., Wüstefeld, G., and Hübers, H.-W., Phys. Rev. Lett. 90, 94801 (2003).CrossRefGoogle Scholar
15. Andrews, H. L. and Brau, C. A., Phys. Rev. ST AB 7, 070701 (2004).Google Scholar
16. Williams, G. P., Rev. Sci. Inst. 73, 1461 (2002).CrossRefGoogle Scholar
17. Smith, S. and Purcell, E., Phys. Rev. 92, 1069 (1953).CrossRefGoogle Scholar
18. Mross, M., Lowell, T. H., Durant, R., and Kimmitt, M. F., J. Biol. Phys. 29, 295 (2003).CrossRefGoogle Scholar
19. Doucas, G., Kimmitt, M. F., Kormann, T., Korschinek, G., and Wallner, C., Int. J. Infrared. Milli. 24, 829 (2003).10.1023/A:1023749722697CrossRefGoogle Scholar
20. Kalinin, B. N., Karlovets, D. V., Kostousov, A. S., Naumenko, G. A., Potylitsyn, A. P., Saruev, G. A., and Sukhikh, L. G., Nucl. Instrum. Meth. B 252, 62 (2006).CrossRefGoogle Scholar

Altmetric attention score

Full text views

Full text views reflects PDF downloads, PDFs sent to Google Drive, Dropbox and Kindle and HTML full text views.

Total number of HTML views: 0
Total number of PDF views: 10 *
View data table for this chart

* Views captured on Cambridge Core between September 2016 - 25th February 2021. This data will be updated every 24 hours.

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Terahertz Ellipsometry Using Electron-Beam Based Sources
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Terahertz Ellipsometry Using Electron-Beam Based Sources
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Terahertz Ellipsometry Using Electron-Beam Based Sources
Available formats
×
×

Reply to: Submit a response


Your details


Conflicting interests

Do you have any conflicting interests? *