Hostname: page-component-586b7cd67f-dlnhk Total loading time: 0 Render date: 2024-12-08T22:10:50.840Z Has data issue: false hasContentIssue false

Synthesis and Study of Nanostructures Via Microwave Heating

Published online by Cambridge University Press:  15 March 2011

Oxana V. Kharissova
Affiliation:
Facultad de Ciencias Físico Matemáticas, Universidad Autónoma de Nuevo León, Méxicookhariss@ccr.dsi.uanl.mx, ederz@hotmail.com
Eder Zavala
Affiliation:
Facultad de Ciencias Físico Matemáticas, Universidad Autónoma de Nuevo León, Méxicookhariss@ccr.dsi.uanl.mx, ederz@hotmail.com
Ubaldo Ortíz
Affiliation:
Facultad de Ingeniería Mecánica y Eléctrica, Universidad Autónoma de Nuevo León, Méxicouortiz@ccr.dsi.uanl.mx
Jorge L. Hernández-Piñero
Affiliation:
Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, México
Stanislav Soloviev
Affiliation:
University of South Caroline, USAsoloviev@engr.sc.edu
Get access

Abstract

This work is devoted to microwave heating of graphite, sucrose, calcined sucrose, and a mixture of graphite with sucrose to produce carbon nanotubes (CNT's). The samples were submitted to microwave radiation (power 800W, frequency 2.45 GHz) in air and high vacuum (10−5Torr) for 30 – 60 min. The oven temperature was approximately 1200°C. After vaporization the condensed material was collected on various fused silica targets (different morphologies were used). The samples were found to contain a significant proportion of nanotubes, nanoparticles and fibers (1-2.8 micrometers), which appeared to be highly graphitized and helical structured. After deposition, the morphology of carbon nanotubes was studied with SEM, TEM and AFM techniques. It was observed that multi-walled nanotubes (MWNT's) were produced by this method. The morphology of fused silicon based substrates (SiO2, SiC) was studied as an important factor for the growth of carbon nanotubes. Many aspects as the size and shape of the obtained nanotubes on different substrates (porous and non-porous fused silicon substrates) were achieved, as well as the concentration of them across the substrate and other properties.

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Choi, W.B., Jin, Y.W., Kim, H.Y., Lee, S.J., Yun, M.J., Kang, J.H., Choi, Y.S., Park, N.S., Lee, N.S., Kim, J.M., Appl. Phys. Lett. 78 (2001)1547 Google Scholar
2. Liu, C., Fan, Y.Y., Liu, M., Cong, H.T., Cheng, H.M., Dresselhaus, M.S., Science 286 (1999) 1127.Google Scholar
3. Kong, J., Franklin, N.R., Zhou, C.W., Chapline, M.G., Peng, S., Cho, K.J., Dai, H.J., Science 287(2000) 622.Google Scholar
4. Bethune, D.S., Kiang, C.H., Vries, M.S.de, Gorman, G., Savoy, R., Vázquez, J., Beyers, R., Nature 363 (1993) 605.Google Scholar
5. Thess, A., Lee, R., Nicolaev, P., Dai, H., Petit, P., Robert, J., Xu, C., Lee, Y.H., Kim, S.G., Rinzler, A.G., Colbert, D.T., Scuseria, G.E., Tomanek, D., Fisher, J.E., Smalley, R.E., Science 273 (1996) 483.Google Scholar
6. Terrones, M., Grobert, N., Zhang, J.P., Terrones, H., Olivares, J., Hsu, W.K., Hare, J.P., Cheetham, A.K., Kroto, H.W., Walton, D.R.M., Chem. Phys. Lett. 285 (1998) 299.Google Scholar
7. Nath, M., Satishkumar, B.C., Govindaraj, A., Vinod, C.P., Rao, C.N.R., Chem. Phys. Lett. 322 (2000) 33.Google Scholar
8. Jin Lee, Cheol and Park, Jeunghee, School of Electrical Engineering, Kunsan National University, Kunsan, (2000) 573701.Google Scholar
9. Byszewsri, P. and Klusek, Z., Optoelectronics Review, 9 (2001) 203210.Google Scholar
10. Ma, X., Wang, E.G., Appl. Phys. Lett. 78 (2001) 978 Google Scholar
11. Sung, S.L., Tsai, S.H., Tseng, C.H., Chaiiang, F.K., Liu, X.W., Shih, H.C., Appl. Phys. Lett. 78 (1999) 197 Google Scholar
12. Rakov, E.G., Russ. Chem. Rev. 70(10) (2001) 827863 Google Scholar
13. Kharissova, O.V., Ortiz, U., Hinojosa, M., Mat. Res. Soc., 654 (2001) AA.3.14.16.Google Scholar
14. Teooreanu, I.F., Revue Roum. Chim., 40(10) (1995) 965.Google Scholar
15. Ikeda, Tesuya, Kamo, Toshiihiro, Danno, Minoru, Appl. Phys. Lett, 67(7) (1995) 900.Google Scholar
16. Xie, Su-yuan, Huang, Rong-bin, Yu, La-jia, Ding, Jie, and Zheng, Lan-sun, Applied Physics Letters, 75(18) (1999) 27642766.Google Scholar
17. Kawasaki, S.; Komiyama, S.; Ohmori, S.; Yao, A.; Okino, F.; Touhara, H. Preparation of Carbon Nanotubes by Using Mesoporous Silica. Mat. Res. Soc. Symp. Proc. 2001, 675.Google Scholar
18. Kharissova, O.V., Nieto, I., Ortiz, U., Aguilar, J.A., Hinojosa, M. Mat.Res.Soc., 740, (2003) I7.25.16 Google Scholar
19. Kharissova, O.V.; Nieto, I.; Ortíz, U.; Aguilar, J.A.; Hinojosa, M. Condensation of Carbon Vapor in the Microwave Oven. MRS Proceedings 2002, 740. Materials Research Society, 2002 Fall Meeting, Boston, MA.Google Scholar
20. Soloviev, S.; Das, T.; Sudarshan, T.S. Structural and Electrical Characterization of Porous Silicon Carbide Formed in n-6H-SiC Substrates. Electrochemical and Solid-State Letters 2003, 6 (2), 13 Google Scholar
21. Zhang, W.D., Thong, J.T.L., Tjiu, W.C., Gan, L.M., Diamond and Related Materials, 11(2002) 16381642.Google Scholar
22. Avetik, R., Pradhan Bhabendra, K, Jiping, Chang, Gugang, Chen, Eklunnd Peter, C., J. Phys. Chem. B, 106(34) (2002) 86718675 Google Scholar