Skip to main content Accessibility help
×
Home
Hostname: page-component-559fc8cf4f-q7jt5 Total loading time: 0.327 Render date: 2021-03-05T21:32:43.056Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": false, "newCiteModal": false, "newCitedByModal": true }

Synthesis and Compositional Control of Size Monodisperse SixGe1-x Nanocrystals for Optoelectronic Applications

Published online by Cambridge University Press:  06 September 2013

Keith Linehan
Affiliation:
Tyndall National Institute, University College Cork, Lee Maltings, Cork, Ireland
Darragh Carolan
Affiliation:
Tyndall National Institute, University College Cork, Lee Maltings, Cork, Ireland
Daithi Ó Sé
Affiliation:
Tyndall National Institute, University College Cork, Lee Maltings, Cork, Ireland
Hugh Doyle
Affiliation:
Tyndall National Institute, University College Cork, Lee Maltings, Cork, Ireland
Get access

Abstract

Alkyl-terminated SixG1-x nanocrystals are prepared at room temperature by co-reduction of Si and Ge precursors by hydride reducing agents within inverse micelles. Compositional control of the alloy silicon-germanium NCs (ca. 3.6 nm) is achieved by varying the relative amounts of each precursor used in the synthesis. Transmission electron microscopy imaging confirmed that the NCs are highly crystalline with a narrow size distribution; optical spectroscopy shows strong quantum confinement effects, with moderate absorption in the UV spectral range, and a strong blue emission with a marked dependency on excitation wavelength.

Type
Articles
Copyright
Copyright © Materials Research Society 2013 

Access options

Get access to the full version of this content by using one of the access options below.

References

Semiconductor nanocrystal quantum dots: synthesis, assembly, spectroscopy and applications, edited by Rogach, A. L. (Springer, Wien – New York, 2008).CrossRefGoogle Scholar
Semiconductor and Metal Nanocrystals: Synthesis and Electronic and Optical Properties, edited by Klimov, V. I. (Marcel Dekker, New York, 2004).Google Scholar
Device applications of silicon nanocrystals and nanostructures, edited by Koshida, N. (Springer, New York, 2008).Google Scholar
Norris, D. J., Efros, A. L. and Erwin, S. C., Science 319, 1776 (2005).CrossRef
Bailey, R. E. and Nie, S., J. Am. Chem. Soc. 125, 7100 (2003).CrossRef
Barry, S. D., Yang, Z., Kelly, J. A., Henderson, E. J. and Veinot, J. G. C., Chem. Mater. 23, 5096 (2011).CrossRef
Palfinger, G., Bitnar, B., Sigg, H., Muller, E., Stutz, S. and Grutzmacher, D., Phys. E 16, 481 (2003).CrossRef
Sunamura, H., Shiraki, Y. and Fukatsu, S., Appl. Phys. Lett. 66, 953 (1995).CrossRef
Yang, L. F., Watling, J. R., Wilkins, R. C. W., Borici, M., Barker, J. R., Asenov, A., and Roy, S., Semicond. Sci. Technol. 19, 1174 (2004)CrossRef
Virgilio, M. and Grosso, G. J., J. Phys.: Condens. Matter 18, 1021 (2006).
Tang, Y. S., Cai, S., Jin, G., Duan, J., Wang, K. L., Soyez, H. M. and Dunn, B. S., Appl. Phys. Lett. 71, 2448 (1997).CrossRef
Hwang, C. W., Ryu, M. K., Kim, K. B., Lee, S. C. and Kim, C. S., J. Appl. Phys. 77, 3042 (1995).CrossRef
Takeoka, S., Toshikiyo, K., Fujii, M., Hayashi, S. and Yamamoto, K., Phys. Rev. B 61, 15988 (2000).CrossRef
Yang, Y. M., Wu, X. L., Siu, G. G., Huang, G. S., Shen, J. C. and Hu, D. S., J. Appl. Phys. 96, 5239, (2004).CrossRef
Pi, X. D. and Kortshagen, U., Nanotechnology 20, 295602, (2009).CrossRef
Henderson, E. J., Veinot, J. G. C., Chem. Mater. 19, 1886 (2007).CrossRef
Erogbogbo, F., Liu, T., Ramadurai, N., Tuccarione, P., Lai, L., Swihart, M. T. and Prasad, P. N., ACS Nano 5, 7950 (2011).CrossRef
Williams, A. T. R., Winfield, S. A. and Miller, J. N., Analyst 108, 1067 (1983).CrossRef
Tilley, R. D., Warner, J. H., Yamamoto, K., Matsui, I. and Fujimori, H., Chem. Commun. 1833, (2005).CrossRef
Taylor, B. R., Kauzlarich, S. M., Delgado, G. R. and Lee, H. W. H., Chem. Mater. 11, 2493 (1999).CrossRef
Wilcoxon, J. P., Samara, G. A. and Provencio, P. N., Phys. Rev. B. 64, 035417 (2001).; 60, 2704(1999).CrossRef
Warner, J. H., Rubinsztein-Dunlop, H. and Tilley, R. D., J. Phys. Chem. B. 109, 19064 (2005).CrossRef

Full text views

Full text views reflects PDF downloads, PDFs sent to Google Drive, Dropbox and Kindle and HTML full text views.

Total number of HTML views: 0
Total number of PDF views: 11 *
View data table for this chart

* Views captured on Cambridge Core between September 2016 - 5th March 2021. This data will be updated every 24 hours.

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Synthesis and Compositional Control of Size Monodisperse SixGe1-x Nanocrystals for Optoelectronic Applications
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Synthesis and Compositional Control of Size Monodisperse SixGe1-x Nanocrystals for Optoelectronic Applications
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Synthesis and Compositional Control of Size Monodisperse SixGe1-x Nanocrystals for Optoelectronic Applications
Available formats
×
×

Reply to: Submit a response


Your details


Conflicting interests

Do you have any conflicting interests? *