Skip to main content Accessibility help
×
Home
Hostname: page-component-54cdcc668b-g2z8v Total loading time: 0.206 Render date: 2021-03-08T22:55:25.905Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": false, "newCiteModal": false, "newCitedByModal": true }

Synchrotron-based spectroscopy for the characterization of surfaces and interfaces in chalcopyrite solar cells

Published online by Cambridge University Press:  01 February 2011

Iver Lauermann
Affiliation:
Hahn-Meitner-Institut, Glienicker Str. 100, D-14109 Berlin, Germany
Paul Pistor
Affiliation:
Hahn-Meitner-Institut, Glienicker Str. 100, D-14109 Berlin, Germany
Immo Kötschau
Affiliation:
Hahn-Meitner-Institut, Glienicker Str. 100, D-14109 Berlin, Germany
Marcus Bär
Affiliation:
Hahn-Meitner-Institut, Glienicker Str. 100, D-14109 Berlin, Germany
Get access

Abstract

In this paper we describe synchrotron based, state-of-the-art spectroscopic methods for the analysis of surfaces and interfaces in thin film photovoltaic devices, their merits and their limitations. Using results obtained with the “CISSY” end station at the BESSY synchrotron in Berlin, Germany, we show how surface sensitive Synchrotron excited X-ray Photoelectron Spectroscopy (SXPS) and Soft X-ray Emission Spectroscopy (SXES), which yields compositional and chemical depth information in the ten to hundred nm scale, have increased our knowledge of the chemistry of surfaces and buried interfaces of these systems.

Type
Research Article
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below.

References

1 Durose, K. et al. , Prog. Photovolt.: Res. Appl., 12, 177 (2004)CrossRefGoogle Scholar
2 Einstein, A., Annalen der Physik, 17, 132 (1905)CrossRefGoogle Scholar
3 Bubert, H. et al. , eds. Surface and Thin Film Analysis. 2001, Wiley-VCH: Weinheim.Google Scholar
4 Scofield, J.H. J. Electron Spectrosc. Relat. Phenom., 8, 129 (1976)CrossRefGoogle Scholar
5 Yeh, J.J. et al. , Atomic Data and Nuclear Data Tables, 32, 1 (1985)CrossRefGoogle Scholar
6 Reilmann, R.F. et al. , J. Electron Spectrosc. Relat. Phenom., 8, 389 (1976)CrossRefGoogle Scholar
7 Wagner, C.D. et al. , Handbook of X-ray Photoelectron Spectroscopy. 1979, Minnesota: Perkin-Elmer Corporation.Google Scholar
8NIST, NIST X-Ray Photoelectron Spectroscopy Database, NIST Standard Reference Database 20, Version 3.4, 2005, Internet:http://srdata.nist.gov/xps/Google Scholar
9 Briggs, D. et al. , eds. Practical Surface Analysis. Vol. 1. 1990, John Wiley & Sons.Google Scholar
10 Feldmann, L.C. et al. , Fundamentals of Surface and Thin Film Analysis. 1986: North-Holland.Google Scholar
11 Hüfner, S., Photoelectron Spectroscopy. 1995: Springer Verlag.CrossRefGoogle Scholar
12 Schmid, D. et al. , Sol. Energy Mater., 41/42, 281 (1996)CrossRefGoogle Scholar
13 Canava, B. et al. , Appl. Surf. Sci., 202, 8 (2002)CrossRefGoogle Scholar
14 Ruckh, M. et al. , J. Appl. Phys., 76(10), 5945 (1994)CrossRefGoogle Scholar
15 Heske, C. et al. , J. Appl. Phys., 82(5), 2411 (1997)CrossRefGoogle Scholar
16 Cahen, D. et al. , J. Appl. Phys., 57(10), 4761 (1984)CrossRefGoogle Scholar
17 Kao, Y.H. in proc. of Photovoltaics for the 21st Century. 1999. Seattle: Electrochem. Soc. 153 Google Scholar
18 Nelson, A.J. et al. , Appl. Phys. Lett., 57(14), 1428 (1990)CrossRefGoogle Scholar
19 Zurcher, P. et al. in proc. of 19th IEEE Photovoltaic Specialists Conference. 1987. New York, NY, USA. 955 Google Scholar
20 Nelson, A.J. et al. , J. Electron Spectroscopy and Related Phenomena, 105(1), 51 (1999)CrossRefGoogle Scholar
21 Heske, C. et al. , Surf. Interface Anal., 30, 459 (2000)3.0.CO;2-L>CrossRefGoogle Scholar
22 Klein, A. et al. in proc. of 14. Europ. Photovolt. Solar Energy Conf. 1997. 1705 Google Scholar
23 Klein, A. et al. in proc. of 14. Europ. Photovolt. Solar Energy Conf. 1997. 2068 Google Scholar
24 Säuberlich, F. et al. , Thin Solid Films, 431-432, 378 (2003)CrossRefGoogle Scholar
25 Nelson, A.J. et al. , J. Appl. Phys., 74(9), 5757 (1993)CrossRefGoogle Scholar
26 Nelson, A.J. et al. in proc. of 24th IEEE Photovoltaic Specialists Conf. 1994. 279 Google Scholar
27 Loher, T. et al. , J. Appl. Phys., 77(2), 731 (1995)CrossRefGoogle Scholar
28 Saltas, V. et al. , Surf. Rev. and Letters, 7, 235 (2000)Google Scholar
29 Nelson, A.J. et al. , J. Vac. Sci. Technol. A, 13(4), 1990 (1995)CrossRefGoogle Scholar
30 Nelson, A.J. Appl. Phys. Lett., 70(14), 1873 (1997)CrossRefGoogle Scholar
31 Nelson, A.J. et al. , J. Appl. Phys., 73(12), 8561 (1993)CrossRefGoogle Scholar
32 Löher, T. et al. , J. Appl. Phys., 81(12), 7806 (1997)CrossRefGoogle Scholar
33 Meisel, A. et al. , X-ray Spectra and Chemical Binding. Chemical Physics, ed. Gomer, R.. 1989: Springer-Verlag.Google Scholar
34 Crisp, R. et al. , Solid State Commun., 83(12), 1035 (1992)CrossRefGoogle Scholar
35 Heske, C., Appl. Phys. A, 78, 829 (2004)CrossRefGoogle Scholar
36 Gullikson, E., X-ray interactions with matter, 2004, http://www.cxro.lbl.gov/optical_constants/atten2.htmlGoogle Scholar
37 Crisp, R. et al. , Solid State Commun., 78, 465 (1991)CrossRefGoogle Scholar
38 Heske, C. et al. , Appl. Phys. Lett., 75(14), 2082 (1999)CrossRefGoogle Scholar
39 Heske, C. et al. , Appl. Phys. Lett., 74(10), 1451 (1999)CrossRefGoogle Scholar
40 Zhang, L. et al. , BESSY User Meeeting, Berlin, 2004 Google Scholar
41 Reichardt, J. et al. , Appl. Phys. Lett. 86, 172102 (2005)CrossRefGoogle Scholar
42 Ramanathan, K. et al. in proc. of 26th IEEE PVSC. 1997. Anaheim, USA. 319 Google Scholar
43 Rusu, M. et al. , Thin Solid Films, 451-452, 556 (2004)CrossRefGoogle Scholar
44rz, R. et al. , Phys. Rev. B, 70, 205321 (2004)Google Scholar
45 Bär, M. et al. in proc. of 31st IEEE PVSC. 2005. Lake Buena Vista, USA. in pressGoogle Scholar
46 Bär, M. et al. , Prog. Photovolt.: Res. Appl., (in press 2005)Google Scholar
47 Bär, M. et al. , Appl. Phys. Lett., (submitted 2005)Google Scholar
48 Pistor, P., Quantitative analysis of soft x-ray emission spectra applied to chalcopyrite solar cell materials, Diplomarbeit, Freie Universität, Berlin, 2004 Google Scholar
49 Weast, R.C. ed. Handbook of Chemistry and Physics. Vol. 1. 1986, CRC Press, Inc.: Boca Raton, Florida.Google Scholar

Full text views

Full text views reflects PDF downloads, PDFs sent to Google Drive, Dropbox and Kindle and HTML full text views.

Total number of HTML views: 0
Total number of PDF views: 7 *
View data table for this chart

* Views captured on Cambridge Core between September 2016 - 8th March 2021. This data will be updated every 24 hours.

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Synchrotron-based spectroscopy for the characterization of surfaces and interfaces in chalcopyrite solar cells
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Synchrotron-based spectroscopy for the characterization of surfaces and interfaces in chalcopyrite solar cells
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Synchrotron-based spectroscopy for the characterization of surfaces and interfaces in chalcopyrite solar cells
Available formats
×
×

Reply to: Submit a response


Your details


Conflicting interests

Do you have any conflicting interests? *