Skip to main content Accessibility help
×
Home
Hostname: page-component-559fc8cf4f-9dmbd Total loading time: 0.212 Render date: 2021-03-06T15:56:33.230Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": false, "newCiteModal": false, "newCitedByModal": true }

Surface Modification of Si Field Emitter Arrays for Vacuum Sealing

Published online by Cambridge University Press:  14 March 2011

M. Nagao
Affiliation:
Dai Nippon Printing Co., Ltd, 250-1 Wakashiba, Kashiwa-shi, Chiba 277-0871, JAPAN
H. Tanabe
Affiliation:
Dai Nippon Printing Co., Ltd, 250-1 Wakashiba, Kashiwa-shi, Chiba 277-0871, JAPAN
T. Kobayashi
Affiliation:
Musashi Institute of Technology, 1-28-1 Tamazutsumi, Setagaya-ku, Tokyo 158-8557, JAPAN
T. Matsukawa
Affiliation:
Electrotechnical Laboratory, 1-1-4 Umezono, Tsukuba-shi, Ibaraki 305-8568, JAPAN
S. Kanemaru
Affiliation:
Electrotechnical Laboratory, 1-1-4 Umezono, Tsukuba-shi, Ibaraki 305-8568, JAPAN
J. Itoh
Affiliation:
Electrotechnical Laboratory, 1-1-4 Umezono, Tsukuba-shi, Ibaraki 305-8568, JAPAN
Get access

Abstract

Vacuum packaging is a very important issue for vacuum microelectronics devices, especially for field emission displays. Emission current from the field emitter array (FEA), however, is known to decrease significantly after the vacuum packaging process. The current decrease is caused by heating treatment in the vacuum sealing process. In the present paper, the effect of the heating treatment on Si FEA was investigated and CHF3 plasma treatment was proposed for avoiding the problem. The Si FEA was exposed to plasma for 15sec and emission characteristics were measured before and after the vacuum sealing process using frit. It was confirmed that CHF3 plasma treatment was very effective for avoiding the emission degradation of the Si FEA. Details of the heating damage and CHF3 plasma treatment are described.

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below.

References

1. Hirano, T., Kanemaru, S., Tanoue, H., and Itoh, J., Jpn. J. Appl. Phys. 35, 6637 (1996).CrossRefGoogle Scholar
2. Jeong, J. W., Ju, B. K., Lee, D. J., Lee, Y. H., Lee, N. Y., Ko, Y. W., Moon, Y. G., Choi, D. J., and Oh, M. H., in Technical Digest of the 11th Int'l Vacuum Microelectronics Conf. (Asheville, U.S.A., 1998), p.42.Google Scholar
3. Kim, H., Ju, B. K., Lee, K. B., Kang, M. S., Jang, J., and Oh, M. H., in Technical Digest of the 11th Int'l Vacuum Microelectronics Conf. (Asheville, U.S.A., 1998), p.67.Google Scholar
4. Ito, F., Konuma, K. and Okamoto, A., J. Vac. Sci. Technol. B16, 783 (1999).Google Scholar
5. Betsui, K., in Technical Digest of the 4th Int'l Vacuum Microelectronics Conf. (Nagahama, Japan, 1991), p.26.Google Scholar
6. Coyle, G. J. Jr., and Oehrlein, G. S., Appl. Phys. Lett. 47, 604 (1985).CrossRefGoogle Scholar

Full text views

Full text views reflects PDF downloads, PDFs sent to Google Drive, Dropbox and Kindle and HTML full text views.

Total number of HTML views: 0
Total number of PDF views: 8 *
View data table for this chart

* Views captured on Cambridge Core between September 2016 - 6th March 2021. This data will be updated every 24 hours.

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Surface Modification of Si Field Emitter Arrays for Vacuum Sealing
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Surface Modification of Si Field Emitter Arrays for Vacuum Sealing
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Surface Modification of Si Field Emitter Arrays for Vacuum Sealing
Available formats
×
×

Reply to: Submit a response


Your details


Conflicting interests

Do you have any conflicting interests? *