Skip to main content Accessibility help
×
Home
Hostname: page-component-5bf98f6d76-pcjlm Total loading time: 0.374 Render date: 2021-04-21T14:47:39.257Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": false, "newCiteModal": false, "newCitedByModal": true }

Surface Chemistry of Porous Silicon

Published online by Cambridge University Press:  09 August 2011

J.-N. Chazalviel
Affiliation:
Laboratoire PMC, CNRS-Lcole Polytechnique, 91128 Palaiseau, FRANCE.
F. Ozanam
Affiliation:
Laboratoire PMC, CNRS-Lcole Polytechnique, 91128 Palaiseau, FRANCE.
Get access

Abstract

As-prepared porous silicon comes out covered with covalently bonded hydrogen. This hydrogen coating provides a good electronic passivation of the surface, but it exhibits limited stability, being removed by thermal desorption or converted into an oxide upon prolonged storage in air. Starting from the hydrogenated surface, an oxide layer with good electronic properties is also obtained by anodic oxidation or rapid thermal oxidation.

The hydrogenated surface may be nitridized using thermal treatments in nitrogen or ammonia. Fast halogenation of the surface may be obtained at room temperature, but the resulting coating is rapidly converted to an oxide in the presence of moisture. Many metals have been incorporated into the pores, using chemical or vacuum techniques, or even direct incorporation during porous silicon formation.

More interestingly, organic derivatization may increase surface stability or provide chemical functionalities. The poor reactivity of the hydrogenated surface can be remedied by using various methods: thermal desorption of hydrogen, hydroxylation or halogenation of the surface, thermal or UV assisted reaction. However, most promising results have been obtained through either Lewis-acid catalyzed grafting or electrochemical activation of the surface. The latter method has been used for grafting formate, alkoxy, and recently methyl groups. In most of these methods, oxidation is present as a parallel path, and care must be taken if it is not desired. Also, 100% substitution of the hydrogens by organic groups has never been attained, due to steric hindrance problems. The electrochemical method appears especially fast, and has led to 80% substitution of the hydrogens by methyl groups, with no photoluminescence loss and a chemical stability increased by one order of magnitude.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below.

References

1. Kato, Y., Ito, T., and Hiraki, A., Jpn. J. Appl. Phys. 27, L1406 (1988).CrossRefGoogle Scholar
2. Gupta, P., Colvin, V.L. and George, S.M., Phys. Rev. B 37, 8234 (1988).CrossRefGoogle Scholar
3. Rao, A. Venkateswara, Ozanam, F. and Chazalviel, J.-N., J. Electrochem. Soc. 138, 153 (1991).CrossRefGoogle Scholar
4. Matsumoto, T., Masumoto, Y., Nakashima, S. and Koshida, N., Thin Solid Films 297, 31 (1997).CrossRefGoogle Scholar
5. Yablonovitch, E., Allara, D.L., Tsang, C.C., Gmitter, T. and Bright, T.B., Phys. Rev. Lett. 57,249 (1986).CrossRefGoogle Scholar
6. Dubin, V.M., Ozanam, F. and Chazalviel, J.-N., MRS Symp. Proc. 358, 519 (1995).CrossRefGoogle Scholar
7. Chazalviel, J.-N. and Ozanam, F., in Structural and Optical Properties of Porous Silicon Nanostructures, edited by Amato, G., Delerue, C. and H.-J., von Bardeleben (Gordon and Breach, Amsterdam, 1997) pp. 5371.Google Scholar
8. Tischler, M.A., Collins, R.T., Stathis, J.H. and Tsang, J.C., Appl. Phys. Lett. 60, 639 (1992).CrossRefGoogle Scholar
9. Tsybeskov, L., Peng, C., Duttagupta, S.P., Ettedgui, E., Gao, Y., Fauchet, P.M. and Carver, G.E., Mat. Res. Soc. Symp. Proc. 298, 307 (1993).CrossRefGoogle Scholar
10. Suemune, I., Noguchi, N. and Yamanishi, M., Jpn. J. Appl. Phys. 31, L494 (1992).CrossRefGoogle Scholar
11. Wolkin-Vakrat, M., Fauchet, P.M., Allan, G. and Delerue, C., Phys. Rev. Lett. (under press).Google Scholar
12. Petit, D., Chazalviel, J.-N., Ozanam, F. and Devreux, F., Appl. Phys. Lett. 70, 191 (1997).CrossRefGoogle Scholar
13. Zoubir, N. Hadj and Vergnat, M., Appl. Surf. Sci. 89, 35 (1995).CrossRefGoogle Scholar
14. Kux, A., Muller, F. and Koch, F., MRS Symp. Proc. 283, 311 (1993).CrossRefGoogle Scholar
15. Nakajima, A., Ikatura, T., Watanabe, S. and Nakayama, N., Appl. Phys. Lett. 61, 46 (1992).CrossRefGoogle Scholar
16. Kozlowski, F., Wagenseil, W., Steiner, P. and Lang, W., MRS Symp. Proc. 358, 677 (1995).CrossRefGoogle Scholar
17. Mauckner, G., Walter, T., Baier, T., Thonke, K. and Sauer, R., MRS Symp. Proc. 283, 109 (1993).CrossRefGoogle Scholar
18. Hou, X.Y., Shi, G., Wang, W., Zhang, F.L., Hao, P.H., Huang, D.M. and Wang, X., Appi. Phys. Lett. 62, 1097 (1993).CrossRefGoogle Scholar
19. Linsmeier, J., Wrist, K., Schenk, H., Hilpert, U., Ossau, W., Fricke, J. and Arens-Fischer, R., Thin Solid Films 297, 26 (1997).CrossRefGoogle Scholar
20. Dubin, V.M., Ozanam, F. and Chazalviel, J.-N., Vibr. Spec. 8, 159 (1995).CrossRefGoogle Scholar
21. Halimaoui, A., NATO ASI Ser. E 244 (Kluwer, Dordrecht, 1993) p. 11.Google Scholar
22. Bsiesy, A., Vial, J.C., Gaspard, F., Hérino, R., Ligeon, M., Muller, F., Romestain, R., Wasiela, A., Halimaoui, A. and Bomchil, G., Surf. Sci. 254, 195 (1991).CrossRefGoogle Scholar
23. Hory, M.A., Hérino, R., Ligeon, M., Muller, F., Gaspard, F., Mihalcescu, I. and Vial, J.C., Thin Solid Films 255, 200 (1995).CrossRefGoogle Scholar
24. Uosaki, K., Kondo, T., Noguchi, H., Murakoshi, K. and Kim, Y.Y., J. Phys. Chem. 100, 4564 (1996).CrossRefGoogle Scholar
25. Lehmann, V. and Gbsele, U., Appl. Phys. Lett. 58, 856 (1991).CrossRefGoogle Scholar
26. Gerischer, H., Allongue, P. and Costa-Kieling, V., Ber. Bunsenges. Phys. Chem. 97, 753 (1993).CrossRefGoogle Scholar
27. Chazalviel, J.-N. and Ozanam, F., MRS Symp. Proc. 283, 359 (1993).CrossRefGoogle Scholar
28. Chazalviel, J.-N., in Porous Silicon Science and Technology, edited by Vial, J. C. and Derrien, J. (Les Éditions de Physique, les Ulis, 1995) pp. 1732.CrossRefGoogle Scholar
29. Kooij, E.S., Rama, A.R. and Kelly, J.J., Surf. Sci. 370, 125 (1997).CrossRefGoogle Scholar
30. Petrova-Koch, V., Muschik, T., Kux, A., Meyer, B.K., Koch, F. and Lehmann, V., Appl. Phys. Lett. 61, 943 (1992).CrossRefGoogle Scholar
31. Hirschman, K.D., Tsybeskov, L., Duttagupta, S.P. and Fauchet, P.M., Nature 384, 338 (1996).CrossRefGoogle Scholar
32. Gupta, P., Dillon, A.C., Bracker, A.S. and George, S.M., Surf. Sci. 245, 360 (1991).CrossRefGoogle Scholar
33. Anderson, R.C., Muller, R.S. and Tobias, C.W., J. Electrochem. Soc. 140, 1393 (1993).CrossRefGoogle Scholar
34. Dillon, A.C., Gupta, P., Robinson, M.B., Bracker, A.S. and George, S.M., J. Vac. Sci. Technol. A9, 2222 (1991).CrossRefGoogle Scholar
35. Morazzani, V., Cantin, J.-L., Ortega, C., Pajot, B., Rahbi, R., Rosenbauer, M., Bardeleben, H.J. von and Vazsonyi, E., Thin Solid Films 276, 32 (1996).CrossRefGoogle Scholar
36. Lauerhaas, J.M. and Sailor, M.J., MRS Symp. Proc. 298, 259 (1993).CrossRefGoogle Scholar
37. Lavine, J.M., Sawan, S.P., Shieh, Y.T. and Bellezza, A.J., Appl. Phys. Lett. 62, 1099(1993).CrossRefGoogle Scholar
38. Seo, Y.H., Lee, H.-J., Jeon, H.I., Oh, D. H., Nahm, K.S., Lee, Y.H., Suh, E.-K., Lee, H.J. and Kwang, Y.G., Appl. Phys. Lett. 62, 1812 (1993).CrossRefGoogle Scholar
39. Andsager, D., Hilliard, J. and Nayfeh, M.H., Appl. Phys. Lett. 64, 1141 (1994).CrossRefGoogle Scholar
40. Steiner, P., Kozlowski, F., Wielunski, M. and Lang, W., Jpn. J. Appl. Phys. 33, 6075 (1994).CrossRefGoogle Scholar
41. Zhang, L., Coffer, J.L., Xu, D. and Pinizzotto, R.F., J. Electrochem. Soc. 143, 1390 (1996).CrossRefGoogle Scholar
42. Dücsö, C., Khanh, N.Q., Horváth, Z., Bársony, I., Utriainen, M., Lehto, S., Nieminen, M. and Niinistö, L., J. Electrochem. Soc. 143, 683 (1996).CrossRefGoogle Scholar
43. Bjorklund, R.B., Zangooie, S. and Arwin, H., Langmuir 13, 1440 (1997).CrossRefGoogle Scholar
44. Aylett, B.J., Harding, I.S., Earwaker, L.G., Forcey, K. and Giaddui, T., Thin Solid Films 276, 253 (1996).CrossRefGoogle Scholar
45. Zhang, Y.H., Li, X.J., Zheng, L. and Chen, Q.W., Phys. Rev. Lett. 81, 1710 (1993).CrossRefGoogle Scholar
46. Coffer, J.L., Lilley, S.C., Martin, R.A. and Files-Sesler, L.A., J. Appl. Phys. 74, 2094 (1993).CrossRefGoogle Scholar
47. Canham, L.T., Appl. Phys. Lett. 63, 337 (1993).CrossRefGoogle Scholar
48. Dillon, A.C., Robinson, M.B., Han, M.Y. and George, S.M., J. Electrochem. Soc. 139, 537 (1992).CrossRefGoogle Scholar
49. Glass, J.A. Jr., Wovchko, E.A. and Yates, J.T., Jr., Surf. Sci. 338, 125 (1995).CrossRefGoogle Scholar
50. Dubin, V.M., Vieillard, C., Ozanam, F. and Chazalviel, J.-N., Phys. Stat. Sol. (b) 190, 47(1995).CrossRefGoogle Scholar
51. Lee, E.J., Ha, J.S. and Sailor, M.J., MRS Symp. Proc. 358, 387 (1995).CrossRefGoogle Scholar
52. Kim, N.Y. and Laibinis, P.E., J. Am. Chem. Soc. 119, 2297 (1997).CrossRefGoogle Scholar
53. Vieillard, C., Warntjes, M., Ozanam, F. and Chazalviel, J.-N., ECS Conf. Proc. 95–25, 350 (1996).Google Scholar
54. Fellah, S., Gabouze, N., Ozanam, F., Chazalviel, J.-N., Dakhia, A. and Belkacem, Y., EMRS Meeting (Strasbourg, June 1998) symposium B, abstract IIP.10 (to be published).Google Scholar
55. Li, K.-H., Tsai, C., Campbell, J.C., Kovar, M. and White, J.M., J. Electronic Mat. 23, 409 (1994).CrossRefGoogle Scholar
56. VanderKam, S.K., Bocarsly, A.B. and Schwartz, J., Chem. Mater. 10, 685 (1998).CrossRefGoogle Scholar
57. Bansal, A., Li, X., Lauermann, I., Lewis, N.S., Yi, S.I. and Weinberg, W.H., J. Am. Chem.Soc. 118, 7225 (1996).CrossRefGoogle Scholar
58. Linford, M.R., Fenter, P., Eisenberger, P.M. and Chidsey, C.E.D., J. Am. Chem. Soc. 117, 3145 (1996).CrossRefGoogle Scholar
59. Zazzera, L.A., Evans, J.F., Deruelle, M., Tirrell, M., Kessel, C.R. and Mckeown, P., J. Electrochem. Soc. 144, 2184 (1997).CrossRefGoogle Scholar
60. Buriak, J.M. and Allen, M.J., J. Am. Chem. Soc. 120, 1339 (1998).CrossRefGoogle Scholar
61. Lee, E.J., Ha, J.S. and Sailor, M.J., J. Am. Chem. Soc. 117, 8295 (1995).CrossRefGoogle Scholar
62. Lee, E.J., Bitner, T.W., Ha, J.S., Shane, M.J. and Sailor, M.J., J. Am. Chem. Soc. 118, 5375 (1996).CrossRefGoogle Scholar
63. Warntjes, M., Vieillard, C., Ozanam, F. and Chazalviel, J.-N., J. Electrochem. Soc. 142, 4138 (1995).CrossRefGoogle Scholar
64. Villeneuve, C. Henry de, Pinson, J., Bernard, M.C. and Allongue, P., J. Phys. Chem. B 101, 2415 (1997).CrossRefGoogle Scholar
65. Dubois, T., Ozanam, F. and Chazalviel, J.-N., ECS Conf. Proc. 97–7, 296 (1997).Google Scholar

Full text views

Full text views reflects PDF downloads, PDFs sent to Google Drive, Dropbox and Kindle and HTML full text views.

Total number of HTML views: 0
Total number of PDF views: 9 *
View data table for this chart

* Views captured on Cambridge Core between September 2016 - 21st April 2021. This data will be updated every 24 hours.

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Surface Chemistry of Porous Silicon
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Surface Chemistry of Porous Silicon
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Surface Chemistry of Porous Silicon
Available formats
×
×

Reply to: Submit a response


Your details


Conflicting interests

Do you have any conflicting interests? *