Skip to main content Accessibility help
×
Home
Hostname: page-component-559fc8cf4f-6f8dk Total loading time: 0.301 Render date: 2021-03-05T21:21:36.162Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": false, "newCiteModal": false, "newCitedByModal": true }

Subsurface Damage Characterization of Hydrogen Ion Implanted Silicon Wafer with Uv/Millimeter-Wave Technique

Published online by Cambridge University Press:  10 February 2011

Yoh-Ichiro Ogita
Affiliation:
Kanagawa Institute of Technology, Dept. Electrical & Electronic Engg, 1030 Shimo-Ogino, Atsugi, Kanagawa, 243–0292, Japan
Ken-Ichi Kobayashi
Affiliation:
Kanagawa Institute of Technology, Dept. Electrical & Electronic Engg, 1030 Shimo-Ogino, Atsugi, Kanagawa, 243–0292, Japan
Masaki Kurokawa
Affiliation:
Kanagawa Institute of Technology, Dept. Electrical & Electronic Engg, 1030 Shimo-Ogino, Atsugi, Kanagawa, 243–0292, Japan
Hideyuki Kondo
Affiliation:
Mitsubishi Materials Corp., Silicon Research Center, 1–297 Kitabukuroxho, Omiya, Saitama, 330–8508, JAPAN
Takeo Katoh
Affiliation:
Kanagawa Institute of Technology, Dept. Electrical & Electronic Engg, 1030 Shimo-Ogino, Atsugi, Kanagawa, 243–0292, Japan
Get access

Abstract

The UV/mm-wave technique composed of ultraviolet photoexcitation and millimeter wave probe was examined with photoconductivity amplitude (PCA) to characterize the slight subsurface damage induced by implanting H2 + ion into the subsurface at sub micron depth of Si wafers. The identical samples were also characterized using pulse photoconductivity amplitude (PPCA) obtained by another technique which is specified by blue laser photoexcitation and microwave probe. PCA decreased with increase of ion dose, which coincided well with the result in PPCA. PPCA decreased with increase of implantation energy as 90 to 120 keV, but PCA increased at 120keV. Both PCA and PPCA well reflected the damage at sub micron depth. PCA reflected damage in shallower depth compared to PPCA.

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below.

References

1. Ogita, Y., Semicond, Sci. Tech., 7, 1, pp. A175–179 (1992).Google Scholar
2. Ogita, Y., Hosoda, Y., and Miyazaki, M., in Science and Technology of Semiconductor Surface Preparation, edited by Higashi, G.S., Hirose, M., Raghavan, S., and Verhaverbeke, S., (Materials Research Society, 477, Warrendale, PA, 1997), pp. 209214.Google Scholar
3. Ogita, Y., Tate, N., Masumura, H., Miyazaki, M., and Yakushiji, K., in Recombination Lifetime Measurements in Silicon, edited by Guputa, D. C., Bacher, F.R., and Hughes, W. M., (ASTM, STP 1340, West Conshohocken, PA, 1998), pp. 168182.CrossRefGoogle Scholar
4. Ogita, Y., Nakano, M., and Masumura, H., in Defect and Impurity Engineered Semiconductors and Devices, edited by Ashok, S., Chevsllier, J., Akasaki, I., Johnson, M. M., and Sopori, B. L., (Materials Research Society, 378, Warrendale, PA, 1995), pp. 591596.Google Scholar
5. Ogita, Y., Kobayashi, K., Daio, H., J. Crystal Growth, 210 pp. 3639(2000)CrossRefGoogle Scholar
6. Katoh, T., Kondo, H., Takaishi, K., Tominaga, M., Ogita, Y., Kobayashi, K. and Gan-nen, Y., in Extended Abstracts of the 59th Fall Meeting, The Japan Society of Appl. Phys., (The Japan Society of Applied Physics, No. 2, Tokyo, 1998) P. 690 Google Scholar
7. Ogita, Y., Shinohara, H., Sawanobori, T., and Kurokawa, M., in In-Line Characterization Technique for Performance and Yield Enhancement in Microelectronic Manufacturing II (The International Society for Optical Engineering (SPIE), 3509, Bellingham, WA, 1998), pp. 65–7CrossRefGoogle Scholar
8. Ogita, Y. and Kawasaki, K. in Extended Abstracts of the 46th Spring Meeting, The Japan Society of Applied Physics, (The Japan Society of Applied Physics, No. 2, Tokyo, 1999), p. 824 Google Scholar

Full text views

Full text views reflects PDF downloads, PDFs sent to Google Drive, Dropbox and Kindle and HTML full text views.

Total number of HTML views: 0
Total number of PDF views: 8 *
View data table for this chart

* Views captured on Cambridge Core between September 2016 - 5th March 2021. This data will be updated every 24 hours.

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Subsurface Damage Characterization of Hydrogen Ion Implanted Silicon Wafer with Uv/Millimeter-Wave Technique
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Subsurface Damage Characterization of Hydrogen Ion Implanted Silicon Wafer with Uv/Millimeter-Wave Technique
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Subsurface Damage Characterization of Hydrogen Ion Implanted Silicon Wafer with Uv/Millimeter-Wave Technique
Available formats
×
×

Reply to: Submit a response


Your details


Conflicting interests

Do you have any conflicting interests? *