Skip to main content Accessibility help
×
Home
Hostname: page-component-78dcdb465f-cs4hf Total loading time: 0.233 Render date: 2021-04-15T23:24:41.943Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": false, "newCiteModal": false, "newCitedByModal": true }

A Study on Mechanical Properties of CNT Reinforced Carbon/Carbon Composites under Environment Aging Effects

Published online by Cambridge University Press:  12 April 2013

Ming-Yuan Shen
Affiliation:
Department of Power Mechanical Engineering, National Tsing Hua University, Hsinchu, Taiwan, R.O.C. Plastic Industry Development Center, Taichung, Taiwan, R.O.C.
Yi-Luen Li
Affiliation:
Department of Power Mechanical Engineering, National Tsing Hua University, Hsinchu, Taiwan, R.O.C.
Huang-Suo Su
Affiliation:
Department of Power Mechanical Engineering, National Tsing Hua University, Hsinchu, Taiwan, R.O.C.
Chin-Lung Chiang
Affiliation:
Department of Safety, Health and Environmental Engineering, Hung-Kuang University, Taichung,Taiwan
Yao- Kuei Hsiao
Affiliation:
Plastic Industry Development Center, Taichung, Taiwan, R.O.C.
Ming- Hsien Sung
Affiliation:
Plastic Industry Development Center, Taichung, Taiwan, R.O.C.
Ming-Chuen Yip
Affiliation:
Department of Power Mechanical Engineering, National Tsing Hua University, Hsinchu, Taiwan, R.O.C.
Corresponding
E-mail address:
Get access

Abstract

Carbon/carbon composites (C/C composites) possess superior characteristics of low density, high strength, extremely low coefficient of thermal expansion, high fatigue resistance. In carbonization process, the high temperature pyrolysis made of carbon, hydrogen, oxygen and other elements, results in a lot of voids and cavities generated in the interior of C/C composites. Therefore, the C/C composites are densified to fill the void by using repeated impregnation. But densification is a time-wasting and complex process, which increases production costs in the manufacturing process.

In this study, the Multi-Wall Carbon Nanotubes (MWNTs) were adopted as reinforcement material for C/C composites to reduce the existence of voids or cavities and enhance the mechanical properties of C/C composites under environment aging effects. Three different temperature with high moisture conditions are used to be tested, including high temperature (150°C/ 90%RH), room temperature (25°C/90%RH), and low temperature (-15°C/90%RH) to analyze the mechanical properties of C/C composites, such as flexural and Interlaminar Shear Strength (ILSS).

Type
Articles
Copyright
Copyright © Materials Research Society 2013

Access options

Get access to the full version of this content by using one of the access options below.

References

Buckley, J.D. and Edie, D.D., “Carbon-Carbon Materials and Composites, ” Noyes, New Jersey, pp. 1281, 1993.Google Scholar
Savage, G., “Carbon-Carbon Composites, ” Chapman & Hall, London, pp. 323346, 1993.CrossRefGoogle Scholar
Fitzer, E., “The Future of Carbon-Carbon Composites, ” Carbon, Vol. 25, pp. 163190, 1987.CrossRefGoogle Scholar
Florian, H.G., Malte, H.G., Bodo, F., Wolfgang, B. and Karl, S., “Influence of nano-modification on the mechanical and electrical properties of conventional fibre-reinforced composite, ” Composites: Part A, Vol. 36, pp. 15251535, 2005.Google Scholar
Gojny, F.H. and Schulte, K., “Functionalisation effect on the thermo-mechanical behaviour of multi-wall carbon nanotube/epoxy composites, ” Composites Science and Technology, Vol. 64, pp. 23032308, 2004.CrossRefGoogle Scholar
Najafi, E., Kim, J.Y., Han, S.H. and Shin, K., “UV-ozone treatment of multi-walled carbon nanotubes for enhanced organic solvent dispersion, ” Colloids and Surfaces A, Vol. 284285, pp. 373378, 2006.CrossRefGoogle Scholar
Song, Y.S. and Youn, J.R., “Influence of dispersion states of carbon nanotubes on physical properties of epoxy nanocomposites,” Carbon, Vol. 43, pp. 13781385, 2005.CrossRefGoogle Scholar
Kiselev, M.A. and Kuzayev, A.I., “Preparation and properties of silicone Modified Phenol-Formaldehyde Resin, ” U.S Patent 2685054, 1968.
Hsu, S.E. and Chen, C.I., “The Processing and Properties of Some C/C System” in “Superalloys, Supercomposites and Superceramics, ” Tien, J.K. and Caulfield, T. eds., Academic Press, San Diego, CA, USA, pp. 721744, 1989.CrossRefGoogle Scholar
Paiva, J.F., Mayer, S. and Rezende, M.C., “Evaluation of mechanical properties of four different carbon/epoxy composites used in aeronautical field, ” Materials Research, Vol. 8, pp.1,9197, 2005.CrossRefGoogle Scholar

Full text views

Full text views reflects PDF downloads, PDFs sent to Google Drive, Dropbox and Kindle and HTML full text views.

Total number of HTML views: 0
Total number of PDF views: 9 *
View data table for this chart

* Views captured on Cambridge Core between September 2016 - 15th April 2021. This data will be updated every 24 hours.

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

A Study on Mechanical Properties of CNT Reinforced Carbon/Carbon Composites under Environment Aging Effects
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

A Study on Mechanical Properties of CNT Reinforced Carbon/Carbon Composites under Environment Aging Effects
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

A Study on Mechanical Properties of CNT Reinforced Carbon/Carbon Composites under Environment Aging Effects
Available formats
×
×

Reply to: Submit a response


Your details


Conflicting interests

Do you have any conflicting interests? *