Skip to main content Accessibility help
×
Home
Hostname: page-component-55597f9d44-54vk6 Total loading time: 0.247 Render date: 2022-08-09T15:09:56.109Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "useRatesEcommerce": false, "useNewApi": true } hasContentIssue true

The Study on Charge-trapping Mechanism in Nitride Storage Flash Memory Device

Published online by Cambridge University Press:  01 February 2011

Jia-Lin Wu
Affiliation:
g960101@ccit.edu.tw, Chung-Cheng Institute of Technology, National Defense University, Semiconductor Laboratory, No.190, Sanyuan 1st St., Tahsi,, Taoyuan, 335, Taiwan, +886-3-3900119, +886-3-3900119
Hua-Ching Chien
Affiliation:
g950103@ccit.edu.tw, Chung-Cheng Institute of Technology, National Defense University, Semiconductor Laboratory, No.190, Sanyuan 1st St., Tahsi,, Taoyuan, 335, Taiwan
Chi-Kuang Chang
Affiliation:
g951006@ccit.edu.tw, Chung-Cheng Institute of Technology, National Defense University, Semiconductor Laboratory, No.190, Sanyuan 1st St., Tahsi,, Taoyuan, 335, Taiwan
Chien-Wei Liao
Affiliation:
g951012@ccit.edu.tw, Chung-Cheng Institute of Technology, National Defense University, Semiconductor Laboratory, No.190, Sanyuan 1st St., Tahsi,, Taoyuan, 335, Taiwan
Chih-Yuan Lee
Affiliation:
cylee@ccit.edu.tw, Chung-Cheng Institute of Technology, National Defense University, Semiconductor Laboratory, No.190, Sanyuan 1st St., Tahsi,, Taoyuan, 335, Taiwan
Je-Chuang Wang
Affiliation:
jcwang@ccit.edu.tw, Chung-Cheng Institute of Technology, National Defense University, Semiconductor Laboratory, No.190, Sanyuan 1st St., Tahsi,, Taoyuan, 335, Taiwan
Yung-Fang Chen
Affiliation:
yfchen@phys.ntu.edu.tw, National Taiwan University, Department of Physics, No. 1 Sec. 4 Roosevelt Rd., Taipei, 106, Taiwan
Chin-Hsing Kao
Affiliation:
chkao@ccit.edu.tw, Chung-Cheng Institute of Technology, National Defense University, Semiconductor Laboratory, No.190, Sanyuan 1st St., Tahsi,, Taoyuan, 335, Taiwan
Get access

Abstract

In this work, the charge-trapping distributions of polysilicon-oxide-nitride-oxide-silicon (SONOS) structure are studied. The trapping energy level of SiNx films with different composition ratio deposited by low-pressure chemical vapor deposition (LPCVD) were first characterized by photoluminescence (PL) measurement. Moreover, using F-N/CHE program and charge pumping techniques, the vertical location and the lateral distribution of programmed charges are investigated in the nitride films with different composition ratio. The study offers strong evidence that the density of charge-trapping levels in the Si-rich nitride is higher than the standard nitride. A simple qualitative model and calculation explains that the trapping level distributions in the SiNx films are shallower by increasing relative Si-content. Furthermore, we have observed the nitride trap vertical location was changed by adjusted Si/N composition ratio. And the lateral distribution of hot electron programmed charges in the modified nitride is broader than that in the standard nitride because it offered more charge-trapping sites and shallower charge-trapping levels. In summary, the study can help researchers to understand the nitride charge-trapping mechanism and the analysis of optical/electrical characteristics.

Type
Research Article
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Chen, T. S., Wu, K. H, Chung, H. and Kao, C. H., IEEE Electron Device Lett. 25, 205 (2004).CrossRefGoogle Scholar
2. Deshpande, S. V., Gulari, E., Brown, S. W. and Rand, S. C., J. Appl. Phys. 77, 6534 (1995).CrossRefGoogle Scholar
3. Lue, H. T., Shih, Y. H, Hsieh, K. Y, Liu, R. and Lu, C. Y., IEEE Electron Device Lett. 25, 816 (2004).CrossRefGoogle Scholar
4. Gu, S. H., Wang, T., Lu, W. P, Ting, W., Ku, Y. H. and Lu, C. Y., IEEE Trans. Electron Devices 53, 103 (2006).Google Scholar

Save article to Kindle

To save this article to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

The Study on Charge-trapping Mechanism in Nitride Storage Flash Memory Device
Available formats
×

Save article to Dropbox

To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.

The Study on Charge-trapping Mechanism in Nitride Storage Flash Memory Device
Available formats
×

Save article to Google Drive

To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.

The Study on Charge-trapping Mechanism in Nitride Storage Flash Memory Device
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *