Skip to main content Accessibility help
×
Home
Hostname: page-component-78dcdb465f-9pqtr Total loading time: 0.412 Render date: 2021-04-19T17:10:47.182Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": false, "newCiteModal": false, "newCitedByModal": true }

Study of the Uranium Heterogeneous Diffusion through Crystalline Rocks and Effects of the “Clay-Mediated” Transport

Published online by Cambridge University Press:  01 February 2011

U. Alonso
Affiliation:
CIEMAT, Avda. Complutense 22, Edif. 19, 28040 Madrid, SPAIN
T. Missana
Affiliation:
CIEMAT, Avda. Complutense 22, Edif. 19, 28040 Madrid, SPAIN
M. García-Gutiérrez
Affiliation:
CIEMAT, Avda. Complutense 22, Edif. 19, 28040 Madrid, SPAIN
A. Patelli
Affiliation:
LNL - INFN, Via dell' Università 2, 35020 Legnaro-Padova, ITALY
J. Ravagnan
Affiliation:
LNL - INFN, Via dell' Università 2, 35020 Legnaro-Padova, ITALY
V. Rigato
Affiliation:
LNL - INFN, Via dell' Università 2, 35020 Legnaro-Padova, ITALY
Get access

Abstract

Rock matrix diffusion is one of the possible mechanisms for radionuclide retardation in a deep geological high-level radioactive waste repository, and it is usually considered that radionuclides diffuse as solutes through the rock. Nonetheless, the potential effects that clay, from the bentonite barrier, may induce on the radionuclides migration should be taken into account. Furthermore, transport models generally assume that the whole mineral surface is accessible to transport, whereas transport is highly conditioned by the heterogeneous mineral distribution, since different minerals may act as preferential pathways, while others may present higher sorption capability. It is therefore necessary to determine the actual surface area accessible to transport.

The aim of the present work is the identification of the uranium preferential pathways to the granite, both in presence or absence of bentonite clay. Results showed that uranium as solute diffused in specific mineral areas, indicating that the actual surface area accessible to matrix diffusion, and/or sorption on the surface, is significantly lower than the whole mineral surface. By the other hand, the uranium in presence of the clay was randomly distributed on the surface, and penetrated into the granite mainly through “defects” (as fractures or grain boundaries); its migration being enhanced on specially fractured or disturbed areas.

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below.

References

1. Astudillo, J. Publicación técnica ENRESA, ISBN-84–931224–4–0 (2001).Google Scholar
2. Zimmerman, M.D., Bennet, P.C., Sharp, J.M. Choi, W-J. J. of Cont Hydrol. 58, 5177 (2002).CrossRefGoogle Scholar
3. Wörman, A., Xu, S., Dverstorp, B. J. of Cont Hydr. 60, Iss.1–4, 163191 (2003).CrossRefGoogle Scholar
4. Freedman, V.L., Saripalli, K.P., Meyer, P.D. Appl. Geochem. 18, 589606 (2003).Google Scholar
5. Siitar-Kauppi, M., Hellmuth, K.-H, Linberg, A., Huitti, T. Radiochim. Acta 66/67, 409414 (1994).Google Scholar
6. Alonso, U., Missana, T., Patelli, A., Rigato, V., Rivas, P. J. of Cont. Hydrol. V.61. Iss. 1–4, 95 (2003).Google Scholar
7. Missana, T. Alonso, U., Turrero, M-J. J. of Cont. Hydrol. V.61. Iss. 1–4, pp. 1731 (2003).Google Scholar
8. Toulhoat, N., Potocek, V., Neskovic, C, Radiochim. Acta, 74, 257262, (1996).CrossRefGoogle Scholar
9. Misaelides, P., Godelitsas, A., Stephan, A., Meijer, J., Rolfs, C, Harissopoulos, S., Kokkoris, M., Filippidis, A. Radiochim. Acta 83, 4348 (1998).Google Scholar
10. Ohnuki, T., Kozai, N., Isobe, H. Murakami, T., Yamamoto, S., Aoki, Y., Naramoto, H. J. of Nucl. Sci. and Teen. 34, No. 1, 5862, (1997).Google Scholar
11. Dran, J-C, Moulin, V., Petit, J-C, Ramsay, J.D.F., Russel, P., Stefanini, A., Appl. Geochem. Suppl. Issue N1, 187191, (1992).Google Scholar
12. Dran, J.C., Della Mea, G., Moulin, V., Petit, J.C., Rigato, V. Radiochim. Acta 66/67, 221227, (1994).Google Scholar
13. Bradbury, M.H., Ed. NAGRA Technical Report, 88–23 (1989).Google Scholar
14. Buil, B. Publicacion Técnica ENRESA 07/2002 (2002).Google Scholar
15. Huertas, F. et al. FEBEX Project EC Final Report. EUR19147EN (2000).Google Scholar
16. Sharma, A., Kumar, S., Sharma, S.K., Diwan, P.K., Nath, N., Mittal, V.K., Ghosh, S., Avasthi, D.K. Nucl. Instr. and Meth. B, 170, 323328, (2000).Google Scholar
17. Cristofalini, R., Egeni, G.P., Lo Giudice, A., Pappalardo, L., Rossi, P., Rudello, V., Viviani, M. Nucl. Instr. and Meth. B, 140, Iss 1–2, 185190, (1998).Google Scholar
18. Vieno, T., Nordman, H., Posiva Technical Report, 99–07 (1999).Google Scholar
19. Yamaguchi, T., Sakamoto, Y., Nakayama, S., Vandergraaf, T. J. of Cont. Hydrol. 26, 109117 (1997).Google Scholar
20. Berry, J.A., Bishop, H.E., Cowper, M.M., Fozard, P.R. Radiochim. Acta. 66/67, 243250, (1994).Google Scholar

Full text views

Full text views reflects PDF downloads, PDFs sent to Google Drive, Dropbox and Kindle and HTML full text views.

Total number of HTML views: 0
Total number of PDF views: 8 *
View data table for this chart

* Views captured on Cambridge Core between September 2016 - 19th April 2021. This data will be updated every 24 hours.

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Study of the Uranium Heterogeneous Diffusion through Crystalline Rocks and Effects of the “Clay-Mediated” Transport
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Study of the Uranium Heterogeneous Diffusion through Crystalline Rocks and Effects of the “Clay-Mediated” Transport
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Study of the Uranium Heterogeneous Diffusion through Crystalline Rocks and Effects of the “Clay-Mediated” Transport
Available formats
×
×

Reply to: Submit a response


Your details


Conflicting interests

Do you have any conflicting interests? *