Hostname: page-component-8448b6f56d-sxzjt Total loading time: 0 Render date: 2024-04-19T01:17:52.485Z Has data issue: false hasContentIssue false

Study of Fracture Behavior of Polypropylene/MWCNT and Polypropylene/m-MMT Nanocomposites by Small Angle X-ray Scattering (SAXS)

Published online by Cambridge University Press:  31 January 2012

José. M. Mata-Padilla
Affiliation:
Centro de Investigación en Química Aplicada (CIQA), Blvd. Enrique Reyna 140 Saltillo Coahuila, México.
Carlos. A. Ávila-Orta*
Affiliation:
Centro de Investigación en Química Aplicada (CIQA), Blvd. Enrique Reyna 140 Saltillo Coahuila, México.
Francisco. J. Medellín-Rodríguez
Affiliation:
CIEP-FCQ, UASLP., Av. Dr. Manuel Nava 6, Zona Universitaria, San Luis Potosí, S.L.P., 78210, México.
Janet. A. Valdéz-Garza
Affiliation:
Centro de Investigación en Química Aplicada (CIQA), Blvd. Enrique Reyna 140 Saltillo Coahuila, México.
Adriana Torres-Martínez
Affiliation:
CIEP-FCQ, UASLP., Av. Dr. Manuel Nava 6, Zona Universitaria, San Luis Potosí, S.L.P., 78210, México.
*
Get access

Abstract

The fracture behavior of polypropylene (PP) and its composites was studied as a function of concentration of multiwall carbon nanotubes (MWCNT) and modified montmorillonite (m-MMT). SAXS and WAXS (Small/Wide Angle X-ray Scattering) techniques were used to monitor the morphological changes (i.e. nanocomposite structure and crystalline morphology) caused by various nanoparticle concentrations and polymer uniaxial stretching deformation. The effect of nanoparticle nature was also investigated. The mechanical analysis shows a great effect of nanoclay concentration on the PP deformation, while uniaxial stretching of the PP/MWCNT nanocomposites was less affected by carbon nanotubes concentration. The SAXS and WAXS analysis of stretched samples indicated that the pure polypropylene and nanocomposites with low nanoparticles concentrations (1 wt/wt%) developed a fracture governed by shear yielding mechanism, while PP nanocomposites with higher concentrations of carbon nanotubes and nanoclay showed a crazing and microcraking fracture mechanism. On the other hand, different chemical nature of MWCNT and m-MMT did not affect the fracture mechanism of polypropylene at low nanoparticles concentrations.

Type
Articles
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Ouederni, M. and Phillips, P. J., J. Polym. Sci: Polym. Phys. 33, 1313 (1995).Google Scholar
2. Li, B., Gong, G., Xie, B-H., Yang, W. and Yang, M-B., J. Appl. Polym. Sci, 109, 1161 (2008).Google Scholar
3. Yuan, M., Galloway, J. A., Hoffman, R. J. and Bhatt, S., Polym. Eng. Sci. 51, 94 (2011).Google Scholar
4. Sadeghi, F., Tabatabaei, S. H., Ajji, A. and Carreau, P. J., Can. J. Chem. Eng. 88, 1091 (2010)Google Scholar
5. Arencón, D. and Velasco, J. I.. Materials, 2, 2046 (2009).Google Scholar
6. Kinloch, A. J. and Young, R. J., Fracture Behavior of Polvmers, edited by Young, R. J., (Elsevier Applied Science Publishers, London, 1983), p. 261 Google Scholar
7. Oswald, T.A. and Menges, G., Materials Science of Polymers for Engineers, 2nd ed. (Hanser:Munich, Germany, 2003), p. 622.Google Scholar
8. Jang, B. Z., Uhlmann, D. R. and Vander Sande, J. B., Polym. Eng. Sci. 25, 98 (1985).Google Scholar
9. Narisawa, I., Polym. Eng. Sci. 27, 41 (1987).Google Scholar
10. Narisawa, I. and Yee, A. F., Crazing and Fracture of Polymers. Materials Science and Technology (Wiley-VCH Verlag GmbH & Co KGa, 2006), p.701.Google Scholar
11. Stribeck, N., Nöchel, U., Funari, S. S., Schubert, T., and Timmann, A., Macromol. Chem. Phys. 209, 1992 (2008).Google Scholar
12. Dijkstra, P. T. S., Vand Dijk, D. J. and Huétink, J., Polym. Eng. Sci. 42, 152 (2002)Google Scholar
13. Kim, D.H., Fasulo, P.D., Rodgers, W.R., Paul, D.R., Polymer, 48, 5308 (2007).Google Scholar
14. Kanny, K., Jawahar, P., , Moodley, V.K, J. Mater. Sci., 43, 7230 (2008).Google Scholar
15. Medellín-Rodríguez, F. J., Mata-Padilla, M., Sánchez-Valdes, S., Vega-Díaz, S., Dávalos-Montoya, O., J. Polym. Sci. Part B: Polym. Phys. 46, 2188 (2008).Google Scholar
16. Kawakami, D., Hsiao, B. S., Burger, Ch., Ran, S., Avila-Orta, C., Sics, I., Kikutani, T., Jacob, K. I. and Chu, B., Macromolecules, 38, 91 (2005)Google Scholar
17. Medellín-Rodríguez, F.J., Mata-Padilla, J.M., Hsiao, B.S., Waldo-Mendoza, M.A., Ramírez-Vargas, E., Sánchez-Valdes, S., Polym. Eng. Sci., 47, 1889 (2007).Google Scholar
18. Kobayashi, H., Shioya, M., Tanaka, T., Irisawa, T., Sakurai, S., Yamamoto, K., J Appl Polym Sci 106, 152 (2007).Google Scholar
19. He, Ch., Liu, T., Tjiu, W. Ch., Sue, H-J. and Yee, A., Macromolecules, 41, 193 (2008).Google Scholar
20. Almendarez-Camarillo, A. and Stribeck, N., Fibr. Text. East. Eur., 13, 27 (2005).Google Scholar