Hostname: page-component-546b4f848f-gfk6d Total loading time: 0 Render date: 2023-06-04T06:19:07.368Z Has data issue: false Feature Flags: { "useRatesEcommerce": true } hasContentIssue false

Studies of Oxygen Introduced During Thermal Oxidation and Defects Induced by Rapid Thermal Annealing in Silicon Epitaxial Layers

Published online by Cambridge University Press:  28 February 2011

Akira Usami
Affiliation:
Nagoya Institute of Technology, Gokiso, Showa, Nagoya 466, Japan
Taichi Natori
Affiliation:
Nagoya Institute of Technology, Gokiso, Showa, Nagoya 466, Japan
Akira Ito
Affiliation:
Nagoya Institute of Technology, Gokiso, Showa, Nagoya 466, Japan
Takahide Sugiyama
Affiliation:
Nagoya Institute of Technology, Gokiso, Showa, Nagoya 466, Japan
Seiya Hirota
Affiliation:
Japan Silicon Co., Ltd., Noda 278, Japan
Yutaka Tokuda
Affiliation:
Aichi Institute of Technology, Yakusa, Toyota 470-03, Japan
Takao Wada
Affiliation:
Nagoya Institute of Technology, Gokiso, Showa, Nagoya 466, Japan
Get access

Abstract

Introduction of oxygen during thermal oxidation and production of defects by rapid thermal annealing (RTA) in n-type epitaxial Si layers were studied with deep-level transient spectroscopy measurements. We use oxygen-related thermal donors (TDs) as a monitor for introduction of oxygen in silicon epitaxial layers. It is found that oxygen is introduced from the substrate into the epitaxial layer after thermal annealing. The TD was almost annihilated by RTA at .700°C. However, a shallow trap (Ec−0.073±0.005 eV) was induced by RTA.

Type
Research Article
Copyright
Copyright © Materials Research Society 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Tuomi, T., Hahn, S., Tilli, M., wong, C.-C., and Borland, J. O.: Mater. Res. Soc. Symp. Proc. 71, 47 (1986).CrossRefGoogle Scholar
[2] Wijaranakula, W., and Aminzadeh, M.: J. Appl. Phys. 67, 1566 (1990).CrossRefGoogle Scholar
[3] Fuller, C. S., Ditzenberger, J. A., Hannay, N. B., and Buehler, E.: Phys. Rev. 96, 833 (1954).Google Scholar
[4] Kaiser, W., Frisch, H. L., and Reiss, H.: Phys. Rev. 112, 1546 (1988).CrossRefGoogle Scholar
[5] Claeys, C., and Vanhellemont, J.: Solid State Phenomena 6&7, 21 (1989).CrossRefGoogle Scholar
[6] Stein, H. J., Hahn, S. K., and Shatas, S. C.: J. Appl. Phys. 59, 3495 (1986).CrossRefGoogle Scholar
[7] Tokuda, Y., Kobayashi, N., Usami, A., Inoue, Y., and Imura, M.: J. Appl. Phys. 66, 3651 (1989).CrossRefGoogle Scholar
[8] Mesli, A., Courcelle, E., Zundel, T., and Siffert, P.: Phys. Rev. B 36, 8049 (1987).CrossRefGoogle Scholar
[9] Tokuda, Y., Shimizu, N., and Usami, A.: Jpn. J. Appl. Phys. 18, 309 (1979).CrossRefGoogle Scholar
[10] Lefevre, H. and Schulz, M.: Appl. Phys. 12, 45 (1977).CrossRefGoogle Scholar
[11] Kimerling, L. C., and Benton, J. L.: Appl. Phys. Lett. 39, 410 (1981).CrossRefGoogle Scholar
[12] Hu, S. M.: Appl. Phys. Lett. 31, 53 (1977).CrossRefGoogle Scholar
[13] Mikkelsen, J. C. Jr., : Appl. Phys. Lett. 40, 336 (1982).CrossRefGoogle Scholar
[14] Ourmazd, A., Schroter, W., and Bourret, A. J. Appl. Phys. 56, 1670 (1984).CrossRefGoogle Scholar
[15] Bentini, G., Correra, L., and Donolato, C. J. Appl. Phys. 56, 2922 (1984).CrossRefGoogle Scholar
[16] People, R., and Bean, J. C.: Appl. Phys. Lett. 47, 322 (1985). [Errata; Appl. Phys. Lett. 49, 299 (1986).]CrossRefGoogle Scholar