Skip to main content Accessibility help
×
Home
Hostname: page-component-78dcdb465f-jsbx8 Total loading time: 0.369 Render date: 2021-04-18T20:43:57.903Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": false, "newCiteModal": false, "newCitedByModal": true }

Studies of Orientational Order in Monolayers of Nonlinear Optical Dye Molecules

Published online by Cambridge University Press:  25 February 2011

J. D. Legrange
Affiliation:
AT&T Engineering Research Center, P.O.Box 900, Princeton, New Jersey 08540
L. A. King
Affiliation:
AT&T Engineering Research Center, P.O.Box 900, Princeton, New Jersey 08540
M. G. Kuzyk
Affiliation:
AT&T Engineering Research Center, P.O.Box 900, Princeton, New Jersey 08540
K. D. Singer
Affiliation:
AT&T Engineering Research Center, P.O.Box 900, Princeton, New Jersey 08540
H. E. Katz
Affiliation:
AT&T Engineering Research Center, P.O.Box 900, Princeton, New Jersey 08540
M. L. Schilling
Affiliation:
AT&T Bell Laboratories, 600 Mountain Avenue, Murray Hill, New Jersey 07974
Get access

Abstract

We present results of studies of orientational order of Langmuir-Blodgett monolayer and multilayer films based on second harmonic generation and linear absorption measurements. Two new compounds, a tricyanovinyl aniline and a tricyanovinyl azo dye, both possessing large second order molecular susceptibilities have been synthesized and transferred as monolayers from the air-water interface to solid substrates using the Langmuir-Blodgett technique. The azo dye is a superior Langmuir-Blodgett material, forming films which are chemically and structurally stable. Multilayers of this compound show an enhancement in polar orientational order with thickness, as observed in the dependence of the second harmonic polarization components on number of layers.

Type
Research Article
Copyright
Copyright © Materials Research Society 1988

Access options

Get access to the full version of this content by using one of the access options below.

References

1. Katz, H.E., Singer, K.D., Sohn, J.E., Dirk, C.W., King, L.A., and Gordon, H.M., J. Am. Chem. Soc. 109, 6561(1987).CrossRefGoogle Scholar
2. LeGrange, J.D., Kuzyk, M.G., and Singer, K.D., Molecular Crystals Liquid Crystals, in press.Google Scholar
3. Schilling, M.L. and Katz, H.E., to be published.Google Scholar
4. Nakahara, H. and Fukuda, K., J. Coll. Int. Sci. 93, 530 (1983).CrossRefGoogle Scholar
5. Girling, I.R., Cade, N.A., Kolinsky, P.V., Earls, J.D., Cross, G.H., and Peterson, I.R., Thin Solid Films 132, 101 (1985).CrossRefGoogle Scholar
6. Nishikawa, S., Tokura, Y., Koda, T., and Iriyama, K., Jpn. J. Appl. Phys. 25, 1701 (1986).Google Scholar

Full text views

Full text views reflects PDF downloads, PDFs sent to Google Drive, Dropbox and Kindle and HTML full text views.

Total number of HTML views: 0
Total number of PDF views: 7 *
View data table for this chart

* Views captured on Cambridge Core between September 2016 - 18th April 2021. This data will be updated every 24 hours.

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Studies of Orientational Order in Monolayers of Nonlinear Optical Dye Molecules
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Studies of Orientational Order in Monolayers of Nonlinear Optical Dye Molecules
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Studies of Orientational Order in Monolayers of Nonlinear Optical Dye Molecules
Available formats
×
×

Reply to: Submit a response


Your details


Conflicting interests

Do you have any conflicting interests? *