Hostname: page-component-7479d7b7d-q6k6v Total loading time: 0 Render date: 2024-07-14T02:21:38.108Z Has data issue: false hasContentIssue false

The Structural and Optical Properties of Self-assembled InGaN/GaN Quantum Dots Grown by Molecular Beam Epitaxy

Published online by Cambridge University Press:  01 February 2011

Tim Michael Smeeton
Affiliation:
tim.smeeton@sharp.co.uk, Sharp Laboratories of Europe, Advanced Optoelectronic Devices, Sharp Laboratories of Europe,, Edmund Halley Road,, Oxford Science Park, Oxford, OX4 4GB, United Kingdom, +44 1865 715443
Mathieu Sénès
Affiliation:
tim.smeeton@sharp.co.uk, Sharp Laboratories of Europe, Advanced Optoelectronic Devices, Sharp Laboratories of Europe,, Edmund Halley Road,, Oxford Science Park, Oxford, OX4 4GB, United Kingdom, +44 1865 715443
Katherine L Smith
Affiliation:
mathieu.senes@sharp.co.uk, Sharp Laboratories of Europe, Edmund Halley Road,, Oxford Science Park, Oxford, OX4 4GB, United Kingdom
Stewart E Hooper
Affiliation:
katherine.smith@sharp.co.uk, Sharp Laboratories of Europe, Edmund Halley Road,, Oxford Science Park, Oxford, OX4 4GB, United Kingdom
Jon Heffernan
Affiliation:
stewart.hooper@sharp.co.uk, Sharp Laboratories of Europe, Edmund Halley Road,, Oxford Science Park, Oxford, OX4 4GB, United Kingdom
Get access

Abstract

The structural and optical properties of InGaN quantum dots grown by plasma-assisted molecular beam epitaxy (MBE) have been characterised using atomic force microscopy, high-resolution transmission electron microscopy (TEM), Z-contrast scanning TEM, micro-photoluminescence (PL), temperature dependent PL and time-resolved PL. The uncapped InGaN nano-islands have densities of ∼1.5 × 1011 cm−2, heights of (1.7 ± 1.0) nm and diameters of (10 ± 4) nm. These parameters are not substantially changed during overgrowth of a GaN cap and the resulting quantum dots have a composition of In0.15Ga0.85N. The observation of narrow luminescence peaks in micro-PL measurements proves light emission from discrete energy states and the optical properties indicate strong confinement of carriers in the quantum dots and an unusually weak impact of piezoelectric field effects.

Type
Research Article
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Arakawa, Y., phys. stat. sol. (a) 188 37 (2001)Google Scholar
2. Bimberg, D. et al., J. Phys.: Condens. Matter 15 R1063 (2003)Google Scholar
3. Chichibu, S.F. et al., Nature Materials 5 810 (2006)Google Scholar
4. Schömig, H. et al., Phys. Rev. Lett. 92 106802 (2004)Google Scholar
5. Smeeton, T.M. et al., Appl. Phys. Lett. 83, 5419 (2003)Google Scholar
6. Damilano, B. et al., Appl. Phys. Lett. 75 3751 (1999)Google Scholar
7. Adelmann, C. et al., Appl. Phys. Lett. 76 1570 (2000)Google Scholar
8. Yamaguchi, T. et al., Mater. Res. Soc. Symp. Proc. 831 69 (E2.2) (2005)Google Scholar
9. Tachibana, K. et al., Appl. Phys. Lett. 74, 383 (1999)Google Scholar
10. Moriwaki, O. et al., Appl. Phys. Lett. 76 2361 (2000)Google Scholar
11. Pretorius, A. et al., phys. stat. sol. (c) 3 1679 (2006)Google Scholar
12. Lumilog “Standard” templatesGoogle Scholar
13. Lakner, H. et al., J. Electron. Materials 26, 1103 (1997)Google Scholar
14. Takeguchi, M. et al., Appl. Phys. Lett. 84 2103 (2004)Google Scholar
15. Vickers, M.E. et al., J. Appl. Phys. 94 1565 (2003)Google Scholar
16. Sénès, M., Smith, K.L., Smeeton, T.M., Hooper, S.E. and Heffernan, J., Phys. Rev. B (in press)Google Scholar
17. Chamard, V. et al., Phys. Rev. B 69 125327 (2004)Google Scholar
18. Robinson, J.W. et al., Appl. Phys. Lett. 83, 2674 (2003)Google Scholar