Skip to main content Accessibility help
×
Home

Strained InGaAs/GaAs Multiple Quantum Wells Grown on Planar and Pre-Patterned GaAs(100) Substrates VIA Molecular Beam Epitaxy: Applications to Light Modulators and Detectors

Published online by Cambridge University Press:  21 February 2011

Li Chen
Affiliation:
Photonic Materials and Devices Laboratoiy, University of Southern California, Los Angeles, CA 90089-0241
Kezhong Hu
Affiliation:
Photonic Materials and Devices Laboratoiy, University of Southern California, Los Angeles, CA 90089-0241
K. C. Rajkumar
Affiliation:
Photonic Materials and Devices Laboratoiy, University of Southern California, Los Angeles, CA 90089-0241
S. Guhae
Affiliation:
Photonic Materials and Devices Laboratoiy, University of Southern California, Los Angeles, CA 90089-0241
R. Kapre
Affiliation:
Photonic Materials and Devices Laboratoiy, University of Southern California, Los Angeles, CA 90089-0241
A. Madhukar
Affiliation:
Photonic Materials and Devices Laboratoiy, University of Southern California, Los Angeles, CA 90089-0241
Get access

Abstract

We report the realization of high quality strained InGaAs/GaAs multiple quantum wells (MQW) grown on planar GaAs (100) substrates through optimization of molecular beam epitaxical (MBE) growth conditions and structure. Such MQWs containing ∼ 11% In have lead to the realization of an asymmetric Fabry-Perot (ASFP) reflection modulator with a room temperature contrast ratio of 66:1 and an on-state reflectivity of 30%. For In composition ≥ 0.2, the improved optical quality for very thick (gt;2μm) InGaAs/GaAs MQWs grown on pre-patterned substrates is demonstrated via transmission electron microscopy (TEM) and micro-absorption measurements.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below.

References

1. For example, see Jewell, J. L., Lee, Y. H., Scherer, A., McCall, S. L., Olsson, N. A., Harbison, J. P. and Florez, L. T., Optical Engineering 29, 211 (1990).CrossRefGoogle Scholar
2. Kapre, R., Madhukar, A., Kaviani, K., Guha, S., and Rajkumar, K. C., Appl. Phys. Lett. 56, 922 (1990).CrossRefGoogle Scholar
3. Woodward, T. K., Sizer, Theodore II, Sivco, E. L., and Cho, A. Y., Appl. Phys. Lett. 57, 548 (1990).CrossRefGoogle Scholar
4. Chen, Li, Rajkumar, K. C., and Madhukar, A., Appl. Phys. Lett. 57, 2478 (1990).CrossRefGoogle Scholar
5. Kapre, R., Hu, Kezhong, Chen, Li, Madhukar, A. and Guha, S., these Proceedings; see also, Li Chen, R. M. Kapre, Kezhong Hu, and A. Madhukar, Appl. Phys. Lett. (submitted).Google Scholar
6. Hu, Kezhong, Chen, Li, Madhukar, Anupam, Chen, Ping and Armand Tanguay, R. Jr., Appl. Phys. Lett. (submitted).Google Scholar
7. Kyriakakis, C., Karim, Z., Rilum, J. H., Jung, J. J., Tanguay, A. R. Jr., and Madhukar, A., OSA Topical Conference on Spatial Light Modulators and Applications, Incline Village, Nevada, Vol.14 of the 1990 OSA Technical Digest Series 14, 710, 1990.Google Scholar
8. Chen, P., Kim, J. Y., Madhukar, A., and Cho, N. M., J. Vac. Sci. Technol. B 4, 890 (1986).CrossRefGoogle Scholar
9. Law, K-K, Yan, R. H., Coldren, L. A., and Merz, J. L., Appl. Phys. Lett. 57, 1345 (1990).CrossRefGoogle Scholar
10. Whitehead, M., Rivers, A., Parry, G., Roberts, J. S. and Button, C., Electron. Lett. 25, 984, (1989).CrossRefGoogle Scholar
11. Pezeshki, B., Thomas, D. and Harris, J. S. Jr., IEEE Photon. Technol. Lett. 2, 807, 1990.CrossRefGoogle Scholar
12. Fitzgerald, E. A., Watson, G. P., Proano, R. E., Ast, D. G., Kirchner, P. D., Pettit, G. D. and Woodall, J. M., J. Appl. Phys. 65, 2220 (1989).Google Scholar
13. Guha, S., Madhukar, A., Kaviani, K., and Kapre, R., J. Vac. Sci. Technol. B 8, 149 (1990). See also, S. Guha, A. Madhukar, and Li Chen, Appl. Phys. Lett. 56, 2304, 1990.Google Scholar
14. Van Eck, T. E., Chu, P., Chang, W. S. C., and Wieder, H. H., Appl.Phys. Lett. 49, 135 (1986).CrossRefGoogle Scholar
15. Dobbelaere, W., Kalem, S., Huang, D., Unlu, M. S., and Morkoc, H, Electron. Lett. 24, 295 (1988).CrossRefGoogle Scholar
16. Goodhue, W. D., Burke, B. E., Aull, B. F., and Nichols, K. B., J. Vac. Sci. Technol. A6, 2356 (1988).CrossRefGoogle Scholar
17. Hu, Kezhong, Chen, Li, Madhukar, A., Chen, P., Kaviani, K., Karim, Z., Kyriakakis, C. and Tanguay, A. R. Jr., Appl. Phys. Lett. (submitted).Google Scholar

Full text views

Full text views reflects PDF downloads, PDFs sent to Google Drive, Dropbox and Kindle and HTML full text views.

Total number of HTML views: 0
Total number of PDF views: 5 *
View data table for this chart

* Views captured on Cambridge Core between September 2016 - 25th January 2021. This data will be updated every 24 hours.

Hostname: page-component-898fc554b-mscqj Total loading time: 0.256 Render date: 2021-01-25T12:16:39.378Z Query parameters: { "hasAccess": "0", "openAccess": "0", "isLogged": "0", "lang": "en" } Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": false, "newCiteModal": false }

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Strained InGaAs/GaAs Multiple Quantum Wells Grown on Planar and Pre-Patterned GaAs(100) Substrates VIA Molecular Beam Epitaxy: Applications to Light Modulators and Detectors
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Strained InGaAs/GaAs Multiple Quantum Wells Grown on Planar and Pre-Patterned GaAs(100) Substrates VIA Molecular Beam Epitaxy: Applications to Light Modulators and Detectors
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Strained InGaAs/GaAs Multiple Quantum Wells Grown on Planar and Pre-Patterned GaAs(100) Substrates VIA Molecular Beam Epitaxy: Applications to Light Modulators and Detectors
Available formats
×
×

Reply to: Submit a response


Your details


Conflicting interests

Do you have any conflicting interests? *