Hostname: page-component-7bb8b95d7b-2h6rp Total loading time: 0 Render date: 2024-09-10T05:38:43.615Z Has data issue: false hasContentIssue false

Statistics of Single Cell Mechanics Investigated by Atomic Force Microscopy

Published online by Cambridge University Press:  01 February 2011

Shinichiro Hiratsuka
Affiliation:
hira@ist.hokudai.ac.jp, Hokkaido University, Sapporo, Japan
Yusuke Mizutani
Affiliation:
mizutani@ist.hokudai.ac.jp, Hokkaido University, Sapporo, Japan
PingGen Cai
Affiliation:
caippgg@ist.hokudai.ac.jp, Hokkaido University, Sapporo, Japan
Masahiko Tsuchiya
Affiliation:
tsuchiya-m@ist.hokudai.ac.jp, Hokkaido University, Sapporo, Japan
Hiroshi Tokumoto
Affiliation:
tokumot@es.hokudai.ac.jp, Hokkaido University, Sapporo, Japan
Koichi Kawahara
Affiliation:
kawahar@ist.hokudai.ac.jp, Hokkaido University, Sapporo, Japan
Takaharu Okajima
Affiliation:
okajima@ist.hokudai.ac.jp, Hokkaido University, Sapporo, Japan
Get access

Abstract

We have developed the atomic force microsocpy (AFM) to measure the complex shear modulus, G*, of a large number of cells. In the AFM technique, live cells were arranged in a micro-fabricated glass substrate under the physiological conditions, and the AFM force measurement was examined in many different cells automatically. The results shown in the previous studies revealed that the frequency-dependent G* was well fitted to the so-called structural damping model, which consists of a single power-law function with a Newtonian viscous effect. However, the detail relationship has not been understood. The aim of this study was to verify the relationship between the storage and loss moduli. As results, we found that the relation between the hysteresivity (the ratio of the storage and loss moduli) and the power-law exponent was in good agreement with the structural damping model, and the result was the same as that observed in magnetic twisting cytometry (MTC), in which cells were cultured on flat substrates. This result indicated that the AFM technique presented here becomes a useful technique for precisely measuring the statistical behavior of single cell rheology.

Type
Research Article
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Fabry, B., Maksym, G. N., Butler, J. P., Glogauer, M., Navajas, D., J. J. Fredberg, Phys. Rev. Lett. 87, 148102 (2001)Google Scholar
2 Fabry, B., Maksym, G. N., Butler, J. P., Glogauer, M., Navajas, D., Taback, N. A., Millet, E. J., J. J. Fredberg, Phys. Rev. E. 68, 041914 (2003).Google Scholar
3 Mahaffy, R. E.. Park, S., Gerde, E., Kas, J., Shih, C. K., Biophys. J. 86, 1777 (2004).Google Scholar
4 Alcaraz, J., Buscemi, L., Grabulosa, M., Trepat, X., Fabry, B., Farre, R., Navajas, D., Biophys. J. 84, 2071 (2003).Google Scholar
5 Wu, H. W., Kuhn, T., Moy, V. T., Scanning 20, 389 (1998).Google Scholar
6 Darling, E. M., Zauscher, S S., Block, J. A., Guilak, F F., Biophys. J., 92, 1784 (2007).Google Scholar
7 Okajima, T., Tanaka, M., Tsukiyama, S., Kadowaki, T., Yamamoto, S., Shimomura, M., Tokumoto, H., Nanotechnology 18, 084010 (2007).Google Scholar
8 Mizutani, Y., Tsuchiya, M., Hiratsuka, S., Kawahara, K. K, Tokumoto, H., Okajima, T., Jpn. J. awahara, Appl. Phys. 47, 6177 (2008).Google Scholar
9 Hiratsuka, S., Mizutani, Y., Tsuchiya, M., Kawahara, K., Tokumoto, H. and Okajima, T., Ul Ultramicroscopy tramicroscopy 109, 937 (2009).Google Scholar
10 Radmacher, M., Tillmann, R. W., Fritz, M., Gaub, H. E., Science 257, 1900 (1992).Google Scholar
11 Radmacher, M., Tillmann, R. W., Gaub, H. E., Biophys. J. 64, 735 (1993).Google Scholar
12 Hoffman, B. D., Massiera, G., Citters, K. M. Van, J. C. Crocker, , Proc. Natl. Acad. Sci. U.S.A. 103 10259 (2006).Google Scholar
13 Citters, K. M. Van, Hoffman, B. D., Massiera, G., Crocker, J. C., Biophys. J., 91, 3946 (2006).Google Scholar
14 Massiera, G., Citters, K. M. Van, Biancaniello, P. L., Crocker, J. C., Biophys. J. 93, 3703 (2007).Google Scholar
15 Balland, M., Desprat, N., Icard, D., Féréol, S., Asnacios, A., Browaeys, J., Hénon, S., Gallet, F., Phys. Rev. E 74, 021911 (2006).Google Scholar
16 Fredberg, J. J. and Stamenovic, D., J. Appl. Physiol. 67, 2408 (1989).Google Scholar
17 Hildebrandt, J., Bull. Math. Biophys. 31, 651 (1969).Google Scholar