Skip to main content Accessibility help
×
Home
Hostname: page-component-684899dbb8-7wlv9 Total loading time: 0.823 Render date: 2022-05-26T13:53:14.399Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "useRatesEcommerce": false, "useNewApi": true }

Spatially Resolved Study of Magnesium Incorporation in Zn1-xMgxO Nanostructures

Published online by Cambridge University Press:  01 February 2011

Martin Schirra
Affiliation:
martin.schirra@uni-ulm.de, Universität Ulm, Institut für Halbleiterphysik, Albert-Einstein-Allee 45, Ulm, D-89069, Germany
Anton Reiser
Affiliation:
anton.reiser@uni-ulm.de, Universität Ulm, Institut für Halbleiterphysik, Ulm, 89069, Germany
Günther Michael Prinz
Affiliation:
guenther.prinz@uni-ulm.de, Universität Ulm, Institut für Halbleiterphysik, Ulm, 89069, Germany
Raoul Schneider
Affiliation:
raoul.schneider@uni-ulm.de, Universität Ulm, Institut für Halbleiterphysik, Ulm, 89069, Germany
Rolf Sauer
Affiliation:
rolf.sauer@uni-ulm.de, Universität Ulm, Institut für Halbleiterphysik, Ulm, 89069, Germany
Klaus Thonke
Affiliation:
klaus.thonke@uni-ulm.de, Universität Ulm, Institut für Halbleiterphysik, Ulm, 89069, Germany
Get access

Abstract

We report on the growth of Zn1-xMgxO nanopillars on a-plane sapphire by the vapor liquid solid (VLS) process. The as-grown nano structures are characterized by scanning electron microscopy (SEM), spatially resolved cathodoluminescence (SEM-CL), and integral photoluminescence (PL). The investigation with SEM applying different secondary electron detectors confirms that the pillars are grown by the VLS process. Integral PL experiments reveal an average value of 7% Mg incorporated in the Zn1-xMgxO nano structures. Both ZnO- and Zn1-xMgxO– related luminescence features are observed. The direct incorpoaration of Mg into single pillars is demonstrated with SEM-CL, and different Mg concentrations are found. First annealing experiments on the sample at 850°C lead to an almost complete breakdown of the ZnO- and Zn1-xMgxO– related near band-edge luminescence, whereas the structural properties of the sample morpholgy remain nearly unchanged.

Type
Research Article
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Ohtomo, A., Kawasaki, M., Koida, T., Masubuchi, K., Koinuma, H., Sakurai, Y., Yoshida, Y., Yasuda, T., and Segawa, Y., Appl. Phys. Lett. 72, 2466 (1998)CrossRefGoogle Scholar
2. Kukreja, L., oral presentation at the “4th International Workshop on ZnO and Related Materials”, Giessen, Germany (2006)Google Scholar
3. Qian, F., Li, Y., Gradečak, S., Wang, D., Barrelet, C.J., and Lieber, C.M., Nano Letters 4, 1975 (2004)CrossRefGoogle Scholar
4. Ristić, J., Calleja, E., Trampert, A., Fernández-Garrido, S., Rivera, C., Jahn, U., and Ploog, K.H., Phys. Rev. Lett. 94, 146102 (2005)CrossRefGoogle Scholar
5. Huang, M.H., Wu, Y., Feick, H., Tran, N., Weber, E., and Yang, P., Adv. Mat. 13, 113 (2001)3.0.CO;2-H>CrossRefGoogle Scholar
6. Reiser, A., Ladenburger, A., Prinz, G.M., Schirra, M., Feneberg, M., Langlois, A., Enchelmaier, R., Li, Y., Sauer, R., and Thonke, K., J. Appl. Phys. (2007), acceptedGoogle Scholar
7. Schirra, M., Reiser, A., Prinz, G.M., Ladenburger, A., Thonke, K., and Sauer, R., (submitted to J. Appl. Phys.)Google Scholar
8. Kling, R., Kirchner, C., Gruber, T., Reuss, F. and Waag, A., Nanotechnology 15, 1043 (2004)CrossRefGoogle Scholar

Save article to Kindle

To save this article to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Spatially Resolved Study of Magnesium Incorporation in Zn1-xMgxO Nanostructures
Available formats
×

Save article to Dropbox

To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.

Spatially Resolved Study of Magnesium Incorporation in Zn1-xMgxO Nanostructures
Available formats
×

Save article to Google Drive

To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.

Spatially Resolved Study of Magnesium Incorporation in Zn1-xMgxO Nanostructures
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *