Hostname: page-component-788cddb947-w95db Total loading time: 0 Render date: 2024-10-09T19:38:08.407Z Has data issue: false hasContentIssue false

Spanning Time and Length Scales in Simulations of Radiation Damage

Published online by Cambridge University Press:  01 February 2011

Blas P. Uberuaga*
Affiliation:
Materials Science and Technology Division, Los Alamos National Laboratory, Los Alamos, NM 87545
Get access

Abstract

Simulating radiation damage production and evolution in materials is a problem spanning many orders of magnitude in both time and length scales. Therefore, any one simulation method will be inadequate for studying radiation damage. We apply several modeling techniques to study radiation damage in oxides, specically MgO, Al-doped MgO and MgAl2O4 spinel. We use molecular dynamics to simulate damage production in collision cascades, where energies between 400 eV and 5 keV were investigated. The kinetic behavior of the resulting defects was probed on long time scales using temperature accelerated dynamics. Molecular statics was used to calculate fundamental properties of these defects, and density functional theory calculations support the basic results of the empirical potential studies. Finally, a chemical rate theory model is developed to understand the impact of the atomic scale behavior on dislocation loop size.

Type
Research Article
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Bacon, D. J. and Rubia, T. D. de la J. Nuc. Mater. 216, 275 (1994).Google Scholar
[2] Uberuaga, B. P., Smith, R., Cleave, A. R., Montalenti, F., Henkelman, G., Grimes, R. W., Voter, A. F., and Sickafus, K. E., Phys. Rev. Lett. 92, 115505 (2004).Google Scholar
[3] Uberuaga, B. P., Smith, R., Cleave, A. R., Henkelman, G., Grimes, R. W., Voter, A. F., and Sickafus, K. E., Phys. Rev. B 71, 104102 (2005).Google Scholar
[4] Uberuaga, B. P., Smith, R., Cleave, A. R., Henkelman, G., Grimes, R. W., Voter, A. F., and Sickafus, K. E., Nucl. Instrum. and Meth. B 228, 260 (2005).Google Scholar
[5] Smith, R., Bacorisen, D., Uberuaga, B. P., Sickafus, K. E., Ball, J. A., and Grimes, R. W., J. Phys.: Condens. Matter 17, 875 (2005).Google Scholar
[6] Olander, D. R., Fundamental aspects of nuclear reactor fuel elements, Technical Information Center, Office of Public Affairs, Energy Research and Development Administration, Springfield, Virginia (1976)Google Scholar
[7] Kinoshita, C. and Zinkle, S. J., J. Nuc. Mater. 233-237, 100 (1996)Google Scholar
[8] Weber, W. J., Ewing, R. C., Catlow, C. R. A., Rubia, T. D. de la, Hobbs, L. W., Kinoshita, C., Matzke, H., Motta, A. T., Nastasi, M., Salje, E. K. H., Vance, E. R. and Zinkle, S. J., J. Mater. Res. 13, 1434 (1998).Google Scholar
[9] Sickafus, K. E., Minervini, L., Grimes, R. W., Valdez, J. A., Ishimaru, M., Li, F., McClellan, K. J. and Hartmann, T., Science 289, 748 (2000).Google Scholar
[10] Buckingham, R. A., Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 168, 264 (1938).Google Scholar
[11] Lewis, G. V. and Catlow, C. R. A., J. Phys. C: Solid State Phys., 18, 1149 (1985).Google Scholar
[12] Grimes, R. W., unpublished.Google Scholar
[13] Rankin, W. T and Board, J. A. Jr, Proceedings, 1995 IEEE Symposium on High Performance Distributed Computing p 81 (1995).Google Scholar
[14] Ziegler, J. F., Biersack, J. P. and Littmark, U., The Stopping and Range of Ions in Solids, Volume 1 (1985).Google Scholar
[15] Sørensen, M. R. and Voter, A. F., J. Chem. Phys. 112, 9599 (2000).Google Scholar
[16] Montalenti, F., Sørensen, M. R. and Voter, A. F., Phys. Rev. Lett. 87, 126101 (2001).Google Scholar
[17] Voter, A. F., Montalenti, F. and Germann, T. C., Ann. Rev. Mater. Res. 32, 321 (2002).Google Scholar
[18] Henkelman, G., Uberuaga, B. P. and Jónsson, H., J. Chem. Phys. 113, 9901 (2000).Google Scholar
[19] Henkelman, G. and Jónsson, H., J. Chem. Phys. 113, 9978 (2000).Google Scholar
[20] Montalenti, F., Uberuaga, B. P., Henkelman, G., and Voter, A. F., in preparation.Google Scholar
[21] Henkelman, G. and Jónsson, H., J. Chem. Phys.:111, 7010 (1999).Google Scholar
[22] Mott, N. F. and Littleton, M. J., Trans. Farad. Soc. 34, 485 (1932).Google Scholar
[23] Leslie, M., DL/SCI/TM31T. Tech. Rep., SERC Daresbury Laboratory, 1982.Google Scholar
[24] Kresse, G. and Hafner, J., Phys. Rev. B 47, 558 (1993); 49, 14251 (1994); G. Kresse and J. Furthmüller, Comput. Mater. Sci. 6, 16 (1996); Phys. Rev. B 55, 11169 (1996).Google Scholar
[25] Kresse, G. and Joubert, J., Phys. Rev. B 59, 1758 (1999); P. E. Blöchl, Phys. Rev. B 50, 17953 (1994).Google Scholar
[26] Henkelman, G., Uberuaga, B. P., Harris, D. J. and Harding, J. H., in preparation.Google Scholar