Skip to main content Accessibility help
×
Home
Hostname: page-component-5c569c448b-s84wp Total loading time: 0.266 Render date: 2022-07-02T11:11:13.212Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "useRatesEcommerce": false, "useNewApi": true } hasContentIssue true

SOI-Based Silicon Quantum Dots Contacted by Self-Aligned Nano-Electrodes

Published online by Cambridge University Press:  01 February 2011

Conrad R. Wolf
Affiliation:
conrad.wolf@uni-ulm.de, Ulm University, Institute for Semiconductor Physics, Albert-Einstein-Allee 45, Ulm, 89081, Germany
Andreas Ladenburger
Affiliation:
andreas.ladenburger@uni-ulm.de, Universität Ulm, Institut für Halbleiterphysik, Ulm, 89069, Germany
Rainer Enchelmaier
Affiliation:
rainer.enchelmaier@uni-ulm.de, Universität Ulm, Institut für Halbleiterphysik, Ulm, 89069, Germany
Klaus Thonke
Affiliation:
klaus.thonke@uni-ulm.de, Universität Ulm, Institut für Halbleiterphysik, Ulm, 89069, Germany
Rolf Sauer
Affiliation:
rolf.sauer@uni-ulm.de, Universität Ulm, Institut für Halbleiterphysik, Ulm, 89069, Germany
Get access

Abstract

In this paper we present a novel approach to fabricate single-electron devices utilizing different self-organization and self-alignment effects. Silicon quantum dots (QDs) are obtained employing reactive ion etching (RIE) into a silicon-on-insulator (SOI) substrate with a self-assembled etch mask. Electrodes with nanometer separation are fabricated and aligned to the QDs by means of a controlled electromigration process. The tunneling rates of the devices are defined by the native oxide covering the silicon QDs and can be adjusted by self-limiting thermal oxidation. The devices show clear Coulomb blockade behavior as well as Coulomb staircase features. In some samples also a gate influence is present giving rise to Coulomb diamonds in the differential conductance diagram.

Type
Research Article
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Likharev, K. K., IBM J. Res. Develop. 32, 144 (1988).CrossRefGoogle Scholar
2. Klein, D. L., Roth, R., Lim, A. K. L., Alivisatos, A. P., and McEuen, P. L., Nature 389, 699 (1997).CrossRefGoogle Scholar
3. Sato, T., Ahmed, H., Brown, D., and Johnson, B. F. G., J. Appl. Phys. 82, 696 (1997).CrossRefGoogle Scholar
4. Bolotin, K. I., Kuemmeth, F., Pasupathy, A. N., and Ralph, D.C., Appl. Phys. Lett. 84, 3154 (2004).CrossRefGoogle Scholar
5. Stranski, I. N. and Krastanow, L., Monatshefte für Chemie - Chemical Monthly 71, 351 (1937).CrossRefGoogle Scholar
6. Schmidt, K. H., Bock, C., Versen, M., Kunze, U., Reuter, D., and Wieck, A. D., J. Appl. Phys. 95, 5715 (2004).CrossRefGoogle Scholar
7. Single, C., Zhou, F., Heidemeyer, H., Prins, F. E., Kern, D. P. and Plies, E., J. Vac. Sci. Technol. B 16, 3938 (1998).CrossRefGoogle Scholar
8. Zhuang, L., Guo, L., and Chou, S. Y., Appl. Phys. Lett. 72, 1205 (1998).CrossRefGoogle Scholar
9. Murray, C. B., Norris, D. J., and Bawendi, M. G., J. Am. Chem. Soc. 115, 8706 (1993).CrossRefGoogle Scholar
10. Chen, W., Ahmed, H., and Nakazoto, K., Appl. Phys. Lett. 66, 3383 (1995).CrossRefGoogle Scholar
11. Dolan, G. J., Appl. Phys. Lett. 31, 337 (1977).CrossRefGoogle Scholar
12. Umeno, A. and Hirakawa, K., Appl. Phys. Lett. 86, 143103 (2005).CrossRefGoogle Scholar
13. Morpurgo, A. F., Marcus, C. M., and Robinson, D. B., Appl. Phys. Lett. 74, 2084 (1999).CrossRefGoogle Scholar
14. Park, H., Lim, A. K. L., Alivisatos, A. P., Park, J., and McEuen, P. L., Appl. Phys. Lett. 75, 301 (1999).CrossRefGoogle Scholar
15. Krupenin, V. A., Presnov, D. E., Zorin, A. B., and Niemeyer, J., J. Low Temp. Phys. 118, 287 (2000).CrossRefGoogle Scholar
16. Esen, G. and Fuhrer, M. S., Appl. Phys. Lett. 87, 263101 (2005).CrossRefGoogle Scholar

Save article to Kindle

To save this article to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

SOI-Based Silicon Quantum Dots Contacted by Self-Aligned Nano-Electrodes
Available formats
×

Save article to Dropbox

To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.

SOI-Based Silicon Quantum Dots Contacted by Self-Aligned Nano-Electrodes
Available formats
×

Save article to Google Drive

To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.

SOI-Based Silicon Quantum Dots Contacted by Self-Aligned Nano-Electrodes
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *