Hostname: page-component-78c5997874-t5tsf Total loading time: 0 Render date: 2024-11-19T08:21:53.411Z Has data issue: false hasContentIssue false

Single Grain Si TFTs Fabricated at 100oC for Microelectronics on a Plastic Substrate

Published online by Cambridge University Press:  01 February 2011

Ming He
Affiliation:
mhe@dimes.tudelft.nl, Delft University of Technology, Delft Institute of Microelectronics and Submicrontechnology (DIMES), Feldmannweg 17, Delft, 2628CT, Netherlands
R. Ishihara
Affiliation:
mhe@dimes.tudelft.nl, Delft University of Technology, Delft Institute of Microelectronics and Submicrontechnology (DIMES), Feldmannweg 17, Delft, 2628CT, Netherlands
T. Chen
Affiliation:
mhe@dimes.tudelft.nl, Delft University of Technology, Delft Institute of Microelectronics and Submicrontechnology (DIMES), Feldmannweg 17, Delft, 2628CT, Netherlands
J.W. Metselaar
Affiliation:
mhe@dimes.tudelft.nl, Delft University of Technology, Delft Institute of Microelectronics and Submicrontechnology (DIMES), Feldmannweg 17, Delft, 2628CT, Netherlands
C.I.M. Beenakker
Affiliation:
mhe@dimes.tudelft.nl, Delft University of Technology, Delft Institute of Microelectronics and Submicrontechnology (DIMES), Feldmannweg 17, Delft, 2628CT, Netherlands
Get access

Abstract

Single grain TFTs are fabricated at a maximum temperature of 100oC for macroelectronics on a plastic substrate, as Si channels are fabricated at 100oC by combination of excimer laser crystallization and sputtering. The gate oxide is formed at 80°C by inductively coupled plasma enhanced chemical vapor deposition. These TFTs have shown a smaller threshold swing of 0.49 V/dec. and a higher field-effect mobility of 290 cm2/V·s, which can be used to directly fabricate system circuits or a high quality display on a plastic substrate.

Type
Research Article
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Reuss, R.H., Chalamala, B.R., Moussessian, A., Kane, M.G., Kumar, A., Zhang, D.C., Rogers, J.A., Hatalis, M., Temple, D., Moddel, G., Eliasson, B. J., Estes, M. J., Kunze, J., Handy, E.S., Harmon, E.S., Salzman, D.B., Woodall, J.M., Alam, M.A., Murthy, J.Y., Jacobsen, S.C., Olivier, M., Markus, D., Campbell, P.M. and Snow, E., proc. of the IEEE, Vol. 93, 2005, 12391256.Google Scholar
2 Reuss, R.H., Hopper, D. G. and Park, J.-G., Mater Res Bull, Vol. 31, 2006, 447450.Google Scholar
3 Ishihara, R., Hiroshima, Y., Abe, D., Dijk, B. D. van, Wilt, P. C. van der, Higashi, S., Inoue, S., Shimoda, T., Metselaar, J. W. and Beenakker, C. I. M., IEEE T Electr Dev, vol 51, 2004, 500502.Google Scholar
4 Wilt, P. C. van der., Dijk, B. D. van, Bertens, G. J., Ishihara, R. and Beenakker, C. I. M., Appl. Phys. Lett., Vol. 79, 2001, 18191821.Google Scholar
5 Smith, P. M., Carey, P. G. and Sigmon, T. W., Appl. Phys. Lett., Vol. 70 1997, 342344.Google Scholar
6 Gosain, D. P. and Noguchi, T. and Usui, S., Jpn. J. Appl. Phys., Vol. 39, 2000, L179–L181.Google Scholar
7 Burtsev, A., Apel, M. and Ishihara, R. and Beenakker, C. I. M., Thin Solid Film, Vol. 427, 2003, 309313.Google Scholar
8 Im, J.S. and Kim, H.J., Appl. Phys. Lett., Vol. 64, 1994, 23032305.Google Scholar
9 Ishihara, R., Chen, T., He, M., Deosarran, D., Andel, Y., Metselaar, J.W. and Beenakker, C.I.M., Thin Solid Film, submitted.Google Scholar
10 Nicollian, E. H. and Brews, J. R., MOS (Metal Oxide Semiconductor) physics and technology, 1982, John Wiley & Sons. Google Scholar