Hostname: page-component-8448b6f56d-qsmjn Total loading time: 0 Render date: 2024-04-25T04:15:36.153Z Has data issue: false hasContentIssue false

Simulation of Transient Enhanced Diffusion in Silicon Taking into Account Ostwald Ripening of Defects

Published online by Cambridge University Press:  01 February 2011

Masashi Uematsu*
Affiliation:
NTT Basic Research Laboratories, 3-1 Morinosato-Wakamiya, Atsugi, 243-0198, Japan
Get access

Abstract

The transient enhanced diffusion (TED) of high-dose implanted P is simulated taking into account Ostwald ripening of end-of-range (EOR) defects. First, we integrated a basic diffusion model based on the simulation of in-diffusion, where no implanted damages are involved. Second, from low-dose implantation, we developed a model for TED due to {311} self-interstitial (I) clusters involving Ostwald ripening and the dissolution of {311} clusters. Third, from medium-dose implantation, we showed that P-I clusters should be taken into account, and during the diffusion, the clusters are dissolved to emit self-interstitials that also contribute to TED. Finally, from high-dose implantation, EOR defects are modeled and we derived a formula to describe the time-dependence for Ostwald ripening of EOR defects, which is more significant at higher temperatures and longer annealing times. The simulation satisfactorily predicts the TED for annealing conditions, where the calculations overestimate the diffusion without taking Ostwald ripening into account.

Type
Research Article
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Stolk, P. A., Gossmann, H.J., Eaglesham, D. J., Jacobson, D. C., Rafferty, C. S., Gilmer, G. H., Jaraiz, M., Poate, J. M., Luftman, H. S., and Haynes, T. E., J. Appl. Phys. 81, 6031 (1997).Google Scholar
2. Jones, K. S., Prussin, S., and Weber, E. R., Appl. Phys. A 45, 1 (1988).Google Scholar
3. Uematsu, M., J. Appl. Phys. 82, 2228 (1997).Google Scholar
4. Yoshida, M., Arai, E., Nakamura, H., and Terunuma, Y., J. Appl. Phys. 45, 1498 (1974).Google Scholar
5. Rafferty, C. S., Gilmer, G. H., Jaraiz, M., Eaglesham, D. J., and Gossmann, H.J., Appl. Phys. Lett. 68, 2395 (1996).Google Scholar
6. Uematsu, M., Jpn. J. Appl. Phys. 36, L982 (1997); J. Appl. Phys. 83, 120 (1998).Google Scholar
7. Chao, H. S., Griffin, P. B., Plummer, J. D., and Rafferty, C. S., Appl. Phys. Lett. 69, 2113 (1996).Google Scholar
8. Schroer, E. and Uematsu, M., Jpn. J. Appl. Phys. 38, 7 (1999); M. Uematsu, Jpn. J. Appl. Phys. 38, 6188 (1999).Google Scholar
9. Keys, P. H., Jones, K. S., Law, M. E., Puga-Lambers, M., and Cea, S. M., MRS Spring Meeting 2001, J5.5. Google Scholar
10. Uematsu, M., J. Appl. Phys. 84, 4781 (1998).Google Scholar
11. Choi, P. S., Su, T., Chang, R. D., Chu, P. K., and Kwong, D. L., Process Physics and Modeling in Semiconductor Technology (1996) Electrochem. Soc. Proc. vol. 96-4, p. 149.Google Scholar
12. Pelaz, L., Gilmer, G. H., Gossmann, H.J., Rafferty, C. S., Jaraiz, M., and Barbolla, J., Appl. Phys. Lett. 74, 3657 (1999).Google Scholar
13. Bonafos, C., Mathiot, D., and Claverie, A., J. Appl. Phys. 83, 3008 (1998); E. Lampin, V. Senez, and A. Claverie, J. Appl. Phys. 85, 8137 (1999).Google Scholar
14. Chao, H. S., Crowder, S. W., Griffin, P. B., and Plummer, J. D., J. Appl. Phys. 79, 2352 (1996).Google Scholar
15. Uematsu, M., Jpn. J. Appl. Phys. 37, 5866 (1998).Google Scholar
16. Uematsu, M., Jpn. J. Appl. Phys. 38, L1213 (1999).Google Scholar
17. Oehrlein, G. S., Ghez, R., Fehribach, J. D., Gorey, E. F., Sedgwick, T. O., Cohen, S. A., and Deline, V. R., Proc. 3th Int. Conf. Defects in Semicond., eds. Kimerling, L. C. and Parsey, J. M. Jr, (Metallurgical Society of AIME, Warrenda, PA, 1984) p. 539.Google Scholar
18. Uematsu, M., Jpn. J. Appl. Phys. 38, 6188 (1999).Google Scholar
19. Uematsu, M., Jpn. J. Appl. Phys. 38, 3433 (1999); 39, 1006 (2000); 39, 1608 (2000).Google Scholar