Skip to main content Accessibility help
×
Home
Hostname: page-component-77ffc5d9c7-27lgd Total loading time: 0.401 Render date: 2021-04-23T12:31:23.816Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": false, "newCiteModal": false, "newCitedByModal": true }

Silicide Mediated Grown Silicon Thin Films for Photodiodes

Published online by Cambridge University Press:  26 February 2011

Joondong Kim
Affiliation:
joonkim@kimm.re.kr, Korea Institute of Machinery and Materials, Nano-Mechanical System research center, 171 Jang, Yuseong, Daejeon, 305343, Korea, Republic of, +82-9906-0272, +82-10-42-868-7123
Wayne A. Anderson
Affiliation:
waanders@eng.buffalo.edu, University at Buffalo, State University of New York, Electrical Engineering, Bonner Hall, Buffalo, NY, 14260, United States
Chang-Soo Han
Affiliation:
cshan@kimm.re.kr, Korea Institute of Machinery and Materials, Nano-Mechanical Systems, 171 Jang-dong, Yuseong, Daejeon, 304343, Korea, Republic of
Eung-Sug Lee
Affiliation:
les648@kimm.re.kr, Korea Institute of Machinery and Materials, Nano-Mechanical Systems, 171 Jang-dong, Yuseong, Daejeon, 304343, Korea, Republic of
Get access

Abstract

Quality Si thin films were grown by the metal-induced growth (MIG) method. Metal (Co, Ni, or mixing of Co and Ni) was thermally evaporated on a 200 nm-SiO2 coated Si wafer. Si sputtering was performed at 600 – 620 °C in a dc magnetron system. The reaction of Si and metal first formed a silicide (CoSi2 or NiSi2) layer and further Si sputtering grew a Si film above it. The grown Si films were practically fabricated for Schottky photodiodes and electrically measured under one sun scan illumination (100 mW/cm2).

Type
Research Article
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below.

References

[1] Yoon, Y. -G., Kim, B. -D., Kim, M. -S., Choi, S. -H., and Joo, S. -K., J. Electro. Chem. Soc. 7 G151 (2004).Google Scholar
[2] McCulloch, D. J. and Brotherton, S. D., Appl. Phys. Lett. 66 2060 (1995).10.1063/1.113902CrossRefGoogle Scholar
[3] Benatmane, A., Montgomery, P. C., Fogarassy, E., and Zahorski, D., Appl. Phys. Sci. 208 189 (2003).Google Scholar
[4] Shih, A., Meng, C. -Y., Lee, S. -C., and Chern, M. -Y., J. Appl. Phys. 88 3725 (2000).10.1063/1.1288784CrossRefGoogle Scholar
[5] Kim, J., Anderson, W. A., Song, Y.-J, Kim, G. B., Appl. Phys. Lett. 86 (2005) 253101.CrossRefGoogle Scholar
[6] Kim, J., Anderson, W.A., Nano letters 6 (2006) 1356.CrossRefGoogle Scholar
[7] Imaizumi, M., Ito, T., Yamaguchi, M., Kaneko, K., J. Appl. Phys., 81 (1997) 7635.10.1063/1.365341CrossRefGoogle Scholar
[8] Pakhomov, A. B., Denardin, J. C., de Lima, O. F., Knobel, M., Missell, F. P., J. Magn. Magn. Mater. 226 (2001) 1631.Google Scholar
[9] Ghosh, A. K., Fishman, C., Feng, T., J. Appl. Phys. 51, (1980) 446.10.1063/1.327342CrossRefGoogle Scholar

Full text views

Full text views reflects PDF downloads, PDFs sent to Google Drive, Dropbox and Kindle and HTML full text views.

Total number of HTML views: 0
Total number of PDF views: 9 *
View data table for this chart

* Views captured on Cambridge Core between September 2016 - 23rd April 2021. This data will be updated every 24 hours.

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Silicide Mediated Grown Silicon Thin Films for Photodiodes
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Silicide Mediated Grown Silicon Thin Films for Photodiodes
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Silicide Mediated Grown Silicon Thin Films for Photodiodes
Available formats
×
×

Reply to: Submit a response


Your details


Conflicting interests

Do you have any conflicting interests? *