Hostname: page-component-797576ffbb-bqjwj Total loading time: 0 Render date: 2023-12-01T20:13:04.542Z Has data issue: false Feature Flags: { "corePageComponentGetUserInfoFromSharedSession": true, "coreDisableEcommerce": false, "useRatesEcommerce": true } hasContentIssue false

Short-Period Superlattice Structure of Sn-doped In2O3(ZnO)4 and In2O3(ZnO)5 Nanowires

Published online by Cambridge University Press:  15 February 2011

Chan Woong Na
Department of Chemistry, Korea University, Jochiwon 339-700 Korea;
Seung Yong Bae
Department of Chemistry, Korea University, Jochiwon 339-700 Korea;
Jeunghee Park
Department of Chemistry, Korea University, Jochiwon 339-700 Korea;
Get access


Two longitudinal superlattice structures of In2O3(ZnO)4 and In2O3(ZnO)5 nanowires were exclusively produced by thermal evaporation method. The diameter is periodically modulated in the range of 50-90 nm. They consist of one In-O layer and five (or six) layered Zn-O slabs stacked alternately perpendicular to the long axis, with a modulation period of 1.65 (or 1.9) nm. These superlattice nanowires were doped with 6-8 % Sn. X-ray diffraction pattern reveals the structural defects of wurtzite ZnO crystals due to the In/Sn incorporation. High-resolution X-ray photoelectron spectrum suggests that In/Sn withdraw the electrons from Zn, and enhance the number of dangling-bond O 2p states, resulting in the reduction of band gap. Photoluminescence exhibit the peak shift of near band edge emission to the lower energy as the In/Sn content increases.

Research Article
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)


1 Kasper, H. Z. Anorg. Allg. Chem. 1967, 349, 113.Google Scholar
2 Kimizuka, N.; Isobe, M.; Nakamura, M. J. Solid State Chem. 1995, 116, 170.Google Scholar
3 Li, C.; Bando, Y.; Nakamura, M.; Onoda, M.; Kimizuka, N. J. Solid State Chem. 1998, 139, 347.Google Scholar
4 Li, C.; Bando, Y.; Nakamura, M.; Kimizuka, N. Micron 2000, 31, 543.Google Scholar
5 Yan, Y.; Pennycook, S. J.; Dai, J.; Chang, R. P. H.; Wang, A.; Marks, T. J. Appl. Phys. Lett. 1998, 73, 2585.Google Scholar
6 Hiramatsu, H.; Seo, W. –S.; Kuomoto, K. Chem. Mater. 1998, 10, 3033.Google Scholar
7 Masuda, Y.; Ohta, M.; Seo, W. –S.; Pitschke, W.; Kuomoto, K. J. Solid State Chem. 2000,150, 221.Google Scholar
8 Nomura, K.; Ohta, H.; Ueda, K.; Kamiya, T.; Hirano, M.; Hosono, H. Science 2003, 300, 1269.Google Scholar
9 Ohta, H.; Nomura, K.; Orita, M.; Hirano, M.; Ueda, K.; Suzuki, T.; Ikuhara, Y.; Hosono, H. Adv. Funct. Mater. 2003, 13, 139.Google Scholar
10 Jie, J.; Wang, G.; Han, X.; Hou, J. G. J. Phys. Chem. B 2004, 108, 17027.Google Scholar