Skip to main content Accessibility help
×
Home
Hostname: page-component-559fc8cf4f-9dmbd Total loading time: 2.276 Render date: 2021-03-08T02:05:05.780Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": false, "newCiteModal": false, "newCitedByModal": true }

A short review and Present Status of ZnO Nanoparticle Formation by Ion Implantation Combined with Thermal Oxidation

Published online by Cambridge University Press:  26 February 2011

Hiroshi Amekura
Affiliation:
amekura.hiroshi@nims.go.jp, National Institute for Materials Science, Nanomaterials Laboratory, 3-13 Sakura, Tsukuba, Ibaraki, 305-0003, Japan, +81-29-863-5479, +81-29-863-5599
Oleg A Plaksin
Affiliation:
oleg.plaxine@nims.go.jp, National Institute for Materials Science, Nanomaterials Laboratory, Japan
Naoki Umeda
Affiliation:
umeda.naoki@nims.go.jp, National Institute for Materials Science, Nanomaterials Laboratory
Yoshihiko Takeda
Affiliation:
takeda.yoshihiko@nims.go.jp, National Institute for Materials Science, Nanomaterials Laboratory
Naoki Kishimoto
Affiliation:
kishimoto.naoki@nims.go.jp, National Institute for Materials Science, Nanomaterials Laboratory
Christoph Buchal
Affiliation:
c.buchal@fz-juelich.de, Forschungszentrum, ISG1-IT, Germany
Get access

Abstract

Recently many groups have started studies of formation of zinc-oxide (ZnO) nanoparticle (NP) in transparent insulators, such as silica glass, sapphire, etc, using ion implantation techniques. In the early half of this article, we shortly review recent activities of ZnO NP formation using ion implantation combined with thermal oxidation. Some groups succeeded but the others did not. Even if they succeeded in the formation of ZnO nanostructures, one reported that they were in the shape of thin film and another reported the NP form. Based on our recent experimental results, we point out the importance of the oxidation temperature and the peculiar shapes and depth profiles of ZnO formed.

Type
Research Article
Copyright
Copyright © Materials Research Society 2006

Access options

Get access to the full version of this content by using one of the access options below.

References

1 Ozgur, U., ALivov, Ya. I., Liu, C., Teke, A., Reshchikov, M.A., Dogan, S., Avrution, V., Cho, S.J., and Morkoc, H., J. Appl. Phys. 98, 041301 (2005).CrossRefGoogle Scholar
2 Huang, M.H., Mao, S., Feick, H., Yan, H., Wu, Y., Kind, H., Weber, E., Russo, R., and Yang, P., Science 292, 1897 (2001).CrossRefGoogle Scholar
3 Wang, R.C., Liu, C.P., Huang, J.L., Chen, S.J., Tseng, Y.K., and Kung, S.C.. Appl. Phys. Lett. 87, 013110 (2005).CrossRefGoogle Scholar
4 Cao, H., Zhao, Y.G., Ho, S.T., Seelig, E.W., Wang, Q.H., and Chang, R.P.H., Phys. Rev. Lett. 82, 2278 (1999).CrossRefGoogle Scholar
5 Kawasaki, M., Ohtomo, A., Ohkubo, I., I., Koinuma, H., Tang, Z.K., Yu, P., Wong, G.K.L., Zhang, B.P., and Segawa, Y., Mater. Sci. and Eng. B 56, 239 (1998).CrossRefGoogle Scholar
6 Amekura, H., Kono, K., Kishimoto, N., and Buchal, Ch., presented in the 14th International Conference on Ion Beam Modification of Materials (IBMM2004), Monterey, CA, September (2004), to be published in Nucl. Instr. and Meth. B (2005).Google Scholar
7 Amekura, H., Umeda, N., Sakuma, Y., Kishimoto, N., and Buchal, Ch., Appl. Phys. Lett. 87, 013109 (2005).CrossRefGoogle Scholar
8 Chen, Jinli, Mu, R., Ueda, A., Wu, M.H., Tung, Y.S., Gu, Z., Henderson, D.O., White, C.W., Budai, J.D. and Zuhr, R.A., J. Vac. Sci. Technol. A 16, 1409 (1998).CrossRefGoogle Scholar
9 White, C.W., Meldrum, A., Sonder, E., Budai, J.D., Zuhr, R.A., Withrow, S.P., and Henderson, D.O., Mat. Res. Soc. Symp. Proc. 540, 219 (1999).CrossRefGoogle Scholar
10 Liu, Y.X., Liu, Y.C., Shen, D.Z., Zhong, G.Z., Fan, X.W., Kong, X.G., Mu, R., and Henderson, D.O., J. Cryst. Growth 240, 152 (2002).CrossRefGoogle Scholar
11 Liu, Y.X., Liu, Y.C., Shao, C.L., and Mu, R., J. Phys. D: Appl. Phys. 37, 30215 (2004).Google Scholar
12 Lee, J.K., Tewell, C.R., Schulze, R.K., Nastasi, M., Hamby, D.W., Lucca, D.A., Jung, H.S., and Hong, K.S., Appl. Phys. Lett. 86, 183111 (2005).CrossRefGoogle Scholar
13 Muntele, I., Muntele, C., Thevenard, P., and Ila, D., presented in the 14th International Conference on Surface Modification of Materiasls by Ion Beams (SMMIB'05), Kusadasi, Turkey, September 2005, to be published in Surf. Coating Tech. (2006).Google Scholar
14 Takahashi, K. (private communication).Google Scholar
15 Marques, C., Franco, N., Silva, R.C. da, McHargue, C., and Alves, E., presented in the 5th Iberian Vacuum Meeting (RIVA-5), Guimaraes, Portugal, September 2005.Google Scholar
16 Xiang, X., Zu, X.T., Sun, K., Zhu, S., and Wang, L.M., presented in the 13th International Conference on Radiation Effects in Insulators (REI-2005), Santa Fe, NM, August, 2005.Google Scholar
17 Amekura, H., Umeda, N., Yoshitake, M., Kono, K., Kishimoto, N., and Buchal, Ch., J. Cryst. Growth, to be published in February 2006.Google Scholar

Full text views

Full text views reflects PDF downloads, PDFs sent to Google Drive, Dropbox and Kindle and HTML full text views.

Total number of HTML views: 0
Total number of PDF views: 9 *
View data table for this chart

* Views captured on Cambridge Core between September 2016 - 8th March 2021. This data will be updated every 24 hours.

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

A short review and Present Status of ZnO Nanoparticle Formation by Ion Implantation Combined with Thermal Oxidation
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

A short review and Present Status of ZnO Nanoparticle Formation by Ion Implantation Combined with Thermal Oxidation
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

A short review and Present Status of ZnO Nanoparticle Formation by Ion Implantation Combined with Thermal Oxidation
Available formats
×
×

Reply to: Submit a response


Your details


Conflicting interests

Do you have any conflicting interests? *