Skip to main content Accessibility help
×
Home
Hostname: page-component-684bc48f8b-mkrr2 Total loading time: 1.004 Render date: 2021-04-14T00:13:14.725Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": false, "newCiteModal": false, "newCitedByModal": true }

Shape Reversal of Ge/Si Domes to Pyramids Via Si-Ge Intermixing and Strain Reduction

Published online by Cambridge University Press:  10 February 2011

William L. Henstrom
Affiliation:
Dept. of Physics, University of Illinois at Urbana-Champaign
Chuan-Pu Liu
Affiliation:
Dept. of Physics, University of Illinois at Urbana-Champaign
J. Murray Gibson
Affiliation:
Materials Research Division, Argonne National Laboratory
Get access

Abstract

At 650°C, Si freely intermixes with Ge in the dome islands causing a reduction in the strain of the islands and an increase in island size. The shape reversal of Ge/Si domes to pyramids is investigated by analysis of the strain and size changes that occur on an island by island basis. This was carried out for anneal times of 0, 20, 40 and 60 minutes. Transition islands were observed consistent with previous work[1], which are partially domes and partially pyramids. These islands demonstrated a strain gradient, having a slightly lower strain on the side that has transformed to a pyramid. Cross-sectional STEM was then used to show that this strain gradient is associated with a non-uniform Si intermixing in the islands.

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below.

References

[1]Kamins, T.I., G. Medeiros-Ribeiro, Ohlberg, D.A.A., and Williams, R.S.. Appl. Phys. A 67, 727(1998).CrossRefGoogle Scholar
[2]Floro, J.A., Chason, E., and Lee, S.R.. edited by Pang, S.W.Diagnostic Techniques for Semiconductor Materials Processing H. (Mater. Res. Soc., Pittsburgh, PA, 1996) pp. 4 9 1–6. USA.Google Scholar
[3]Hovsepiam, A., Cherns, D., and Jager, W., Inst. Phys. Conf. Ser. No. 153: Section 10, 413(1997).Google Scholar
[4]Miller, P.D., Chuan-Pu, Liu, and Gibson, J.M., submitted to Ultramicroscopy.Google Scholar
[5]Miller, P.D., Liu, C.-P., Henstrom, W.L., Gibson, J.M., Huang, Y., Zhang, P., Kamins, T.I., Basile, D. P., and Williams, R. Stanley, Appl. Phys. Lett. 75, 46(1999).CrossRefGoogle Scholar
[6]Liu, C.-P., Miller, P.D., Henstrom, W.L. and Gibson, J.M., Presented at MRS Spring Meeting, San Francisco, 49 April, to be published in MRS proceeding (1999).Google Scholar
[7]Hirsch, P.B., Howie, A., Nicholson, R.B., Pashley, D.W., and Whelan, M.J., Electron Microscopy of Thin Crystals, (Butterworths, London, 1965), p. 206.Google Scholar
[8]Ashby, M.F., and Brown, L.M.. Phil. Mag. 8, 1083(1963).CrossRefGoogle Scholar
[9]Ashby, M.F., and Brown, L.M.. Phil. Mag. 8, 1649(1963).CrossRefGoogle Scholar
[10]Liu, C.-P., Miller, P.D., Henstrom, W.L., and Gibson, J.M., submitted to J. Microscopy.Google Scholar
[11] Ludwig Reimer, Transmission Electron Microscopy: Physics of Image Formation and Microanalysis, 3rd ed. (Springer-Verlag, Berlin, 1993) pp. 138, 204–205.Google Scholar
[12]Liu, C.-P., Henstrom, W.L., and Gibson, J.M., Presented at MRS Fall Meeting, Boston, 28 November-3 December, to be published in MRS proceeding (1999).Google Scholar
[13]Henstrom, W.L., Liu, C.-P., Gibson, J.M., Kamins, T.I., and Williams, R.S., in preparation.Google Scholar

Full text views

Full text views reflects PDF downloads, PDFs sent to Google Drive, Dropbox and Kindle and HTML full text views.

Total number of HTML views: 0
Total number of PDF views: 4 *
View data table for this chart

* Views captured on Cambridge Core between September 2016 - 14th April 2021. This data will be updated every 24 hours.

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Shape Reversal of Ge/Si Domes to Pyramids Via Si-Ge Intermixing and Strain Reduction
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Shape Reversal of Ge/Si Domes to Pyramids Via Si-Ge Intermixing and Strain Reduction
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Shape Reversal of Ge/Si Domes to Pyramids Via Si-Ge Intermixing and Strain Reduction
Available formats
×
×

Reply to: Submit a response


Your details


Conflicting interests

Do you have any conflicting interests? *