Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-12-04T12:42:19.032Z Has data issue: false hasContentIssue false

Sensors for Acid-Base-Active Gases

Published online by Cambridge University Press:  16 February 2011

Joachim Maier
Affiliation:
Max-Planck-Institut für Festkörperforschung, Heisenbergstr. 1, 70569 Stuttgart, Germany
Michael Holzinger
Affiliation:
Max-Planck-Institut für Festkörperforschung, Heisenbergstr. 1, 70569 Stuttgart, Germany
Werner Sitte
Affiliation:
Institut für Physikalische und Theoretische Chemie, TechnischeUniversität Graz, Rechbauerstraβe 12, A-8010 Graz, Austria
Get access

Abstract

The theoretical background for potentiometric and conductometric (bulk and surface) sensors is briefly discussed with regard to the usual application, viz. the detection of redox-active gases, and the importance of understanding chemical diffusion is stressed in this context. It is then shown how the analogous concept applied to acid-base interactions leads to powerful possibilities to measure partial pressures of acid-base active gases such as CO2, NH3 and H2O. Two examples of novel sensor principles are discussed: i) The response of the surface ionic conductivity of AgCl or CaF2 upon changes of partial pressures of (Lewis) basic or acid gases can be used to sense NH3 and BF3. ii) In the major part of the paper it is shown how the deliberate use of overall acid-base cell reactions in potentiometric arrangements leads to a fast and precise CO2-sensor. For this purpose, open reference electrodes based on Na2Ti6O13 or Na2SnO3 have been constructed. Owing to the criteria developed in the text the whole cell can be exposed to a CO2 and O2 containing atmosphere without the necessity of sealing. Detailed results are given.

Type
Research Article
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Liu, J., Weppner, W., Solid State Chem. 76, 311 (1990); H. Schettler, J. Liu, W. Weppner, R.A. Huggins, Appl. Phys. A, 57, 31 (1993).Google Scholar
2. Maier, J., Murugaraj, P., Pfundtner, G., Sitte, W., Ber. Bunsenges. Phys. Chem. 93, 1359 (1989); J. Maier, H.L. Tuller, Phys. Rev. B, 47, (13), 8105-8110 (1993).Google Scholar
3. Göpel, W., Progr. Surface Sci. 20, 1 (1986).Google Scholar
4. Göpel, W., Maier, J., Schierbaum, K., and Wiemhöfer, H.-D., Solid State Ionics, 32/33, 440 (1989).Google Scholar
5. Maier, J., J. Phys. Chem. Solids, 46, 309 (1985).Google Scholar
6. Maier, J. in Recent Trends in Superionic Solids and Solid Electrolytes, edited by Chandra, S., Laskar, A. (Academic Press, New York, 1989) p. 137.Google Scholar
7. Maier, J., Ber. Bunsenges. Phys. Chem. 90, 26 (1986).Google Scholar
8. Maier, J., Solid State Ionics, 32/33, 727 (1989).Google Scholar
9. Bieger, T., Maier, J., and Waser, R., Ber. Bunsenges. Phys. Chem. 97 (9), 10981104 (1993); I. Denk, W. Muinch, J. Maier, in preparation.Google Scholar
10. Bieger, T., Yugami, H., Nicoloso, N., Maier, J., and Waser, R., Solid State Ionics, 72, 41 (1994).Google Scholar
11. Maier, J., Solid State Ionics, 62 (1,2), 105111 (1993).Google Scholar
12. Maier, J., Lauer, U., Ber. Bunsenges. Phys. Chem. 94, 973 (1990).Google Scholar
13. Saito, Y., Hariharan, K. and Maier, J., Proc. 4th Int. Symp. on Syst. with Fast Ionic Transport, in press.Google Scholar
14. Maier, J., Holzinger, M., Sitte, W., Solid State Ionics, in press.Google Scholar
15. Iwahara, H., Uchida, H. and Kondo, J., J. Appl. Electrochem. 13, 365 (1983).Google Scholar
16. Kreuer, K.-D., Schdnherr, E., and Maier, J., Solid State Ionics, 70/71, 278 (1994).Google Scholar