Skip to main content Accessibility help
×
Home
Hostname: page-component-684bc48f8b-rk5l8 Total loading time: 0.225 Render date: 2021-04-10T19:08:05.070Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": false, "newCiteModal": false, "newCitedByModal": true }

Self-catalyzed InP Nanowires on Patterned Si Substrates

Published online by Cambridge University Press:  18 May 2015

Kenichi Kawaguchi
Affiliation:
NanoQuine, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan.
Hisao Sudo
Affiliation:
Fujitsu Laboratories Ltd., 10-1 Morinosato-Wakamiya, Atsugi, 243-0197, Japan.
Manabu Matsuda
Affiliation:
Fujitsu Laboratories Ltd., 10-1 Morinosato-Wakamiya, Atsugi, 243-0197, Japan.
Kazuya Takemoto
Affiliation:
Fujitsu Laboratories Ltd., 10-1 Morinosato-Wakamiya, Atsugi, 243-0197, Japan.
Tsuyoshi Yamamoto
Affiliation:
Fujitsu Laboratories Ltd., 10-1 Morinosato-Wakamiya, Atsugi, 243-0197, Japan.
Yasuhiko Arakawa
Affiliation:
NanoQuine, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan. IIS, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan.
Get access

Abstract

Self-catalyzed growth of position-defined InP nanowires (NWs) was investigated on SiO2-mask-pattered Si substrates using metalorganic vapor-phase epitaxy. Using low growth temperatures and high group-III flow rates, pyramidal InP NWs were formed vertically on the mask openings. The diameter and tapering of the InP NWs were successfully controlled by the introduction of HCl and H2S gases during the NW growth. In addition, crystal growth of radial InP/InAsP/InP quantum wells on the sidewall of the InP NWs was performed on Si substrates.

Type
Articles
Copyright
Copyright © Materials Research Society 2015 

Access options

Get access to the full version of this content by using one of the access options below.

References

Mohan, P., Motohisa, J., and Fukui, T., Appl. Phys. Lett. 88, 133105 (2006).CrossRef
Kawaguchi, K., Heurlin, M., Lindgren, D., Borgström, M. T., and Samuelson, L., 23rd International Conference on Indium Phosphide and Related Materials, Berlin, Germany, May 22-26, 2011.
Kawaguchi, K., Heurlin, M., Lindgren, D., Borgström, M. T., Ek, M., and Samuelson, L., Appl. Phys. Lett. 99, 131915 (2011).CrossRef
Dalacu, D., Kam, A., Austing, D. G., Wu, X., Lapointe, J., Aers, G. C., and Poole, P. J., Nanotechnol. 20, 395602 (2009).CrossRef
Kawaguchi, K., Sudo, H., Matsuda, M., Ekawa, M., Yamamoto, T., and Arakawa, Y., Appl. Phys. Lett. 104, 063102 (2014).CrossRef
Kawaguchi, K., Sudo, H., Matsuda, M., Ekawa, M., Yamamoto, T., and Arakawa, Y., MRS Proceedings, mrsf13-1659-ss16-05 (2014).CrossRef
Kawaguchi, K., Sudo, H., Matsuda, M., Ekawa, M., Yamamoto, T., and Arakawa, Y., International Conference on Solid State Devices and Materials, Tsukuba, Japan, Sep. 8-11, 2014.
Mattila, M., Hakkarainen, T., Lipsanen, H., Jiang, H., and Kauppinen, E. I., Appl. Phys. Lett. 89, 063119(2006).CrossRef
Gao, L., Woo, R. L., Liang, B., Pozuelo, M., Prikhodko, S., Jackson, M., Goel, N., Hudait, M. K., Huffaker, D. L., Goorsky, M. S., Kodambaka, S., and Hicks, R. F., Nano Lett. 9, 2223 (2009).CrossRef
Novotny, C. J. and Yu, P. K. L., Appl. Phys. Lett. 87, 203111 (2005).CrossRef
Ren, F., Ng, K. W., Li, K., Sun, H., and Chang-Hasnain, C. J., Appl. Phys. Lett. 102, 012115 (2013).
Agnello, P. D. and Ghandhi, S. K., J. Cryst. Growth 73, 453 (1985).CrossRef
Tsang, W.T., Kapre, R., Sciortino, P.F. Jr., J. Cryst. Growth 136, 42 (1994).CrossRef
Borgström, M. T., Wallentin, J., Trägårdh, J., Ramvall, P., Ek, M., Wallenberg, L. R., Samuelson, L., and Deppert, K., Nano Res 3, 264 (2010).CrossRef

Full text views

Full text views reflects PDF downloads, PDFs sent to Google Drive, Dropbox and Kindle and HTML full text views.

Total number of HTML views: 0
Total number of PDF views: 8 *
View data table for this chart

* Views captured on Cambridge Core between September 2016 - 10th April 2021. This data will be updated every 24 hours.

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Self-catalyzed InP Nanowires on Patterned Si Substrates
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Self-catalyzed InP Nanowires on Patterned Si Substrates
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Self-catalyzed InP Nanowires on Patterned Si Substrates
Available formats
×
×

Reply to: Submit a response


Your details


Conflicting interests

Do you have any conflicting interests? *